Praktikum 3

Ülesanded

Salvestage kursuse kodulehelt omale arvutisse andmestik *sead.xls* (http://www.eau.ee/~ktanel/VL_1112/sead.xls).

Tegu on 2003. aastal teostatud katsega, kus 80-st seast 40 peeti uues külmlaudas ja 40 vanas nõukogudeaegses sigalas, mõlemas sigalas söödeti pooli sigu (so 20 tk) välismaise söödaga ja pooli kodumaise söödaga, kõigist 20-sealistest gruppidest pooled loomad tapeti kohalikus tapamajas (nö üle õue), aga pooltele korraldati stressirohke reis kitsas autokastis Eestimaa teises otsas paiknevasse tapamajja. Kõigi rümpade puhul mõõdeti hulk lihakvaliteedinäitajaid.

Praktikumi esimese ja teise ülesande tehniline pool püüab anda juhiseid, kuidas võimalikult optimaalselt teostada suurt hulka sarnaseid teste ja kuidas saadud suurest hulgast tulemustest Exceli tingimusvormingu (*conditional formatting*) abil visuaalselt välja tuua statistiliselt olulisi (või mõnda muud tingimust rahuldavaid) tulemusi.

Statistiliste analüüside poole pealt käsitletakse selliseid klassiklalisi andmeanalüüsimeetodeid nagu t-test ja korrelatsioonanalüüs.

- 1. Võrrelge tavapärases ja külmlaudas peetud sigade lihakvaliteedinäitajaid.
 - Arvutage kõigi lihakvaliteedinäitajate kohta keskmised, minimaalsed ja maksimaalsed väärtused ning standardhälbed sõltuvalt pidamiskeskkonnast (tavaline või külmlaut).
 - Teostage t-testid selgitamaks keskmiste kvaliteedinäitajate erinevuse statistilist olulisust (NB! Õige t-testi valimiseks tuleb eelnevalt teostada dispersioonide võrdlus F-testiga).
 - Kasutades Exceli tingimusvormindamist, värvige kõik statistiliselt olulistele erinevustele vastavaid p-väärtuseid sisaldavad lahtrid kui p<0,001, siis punaseks, p<0,01 korral oranžiks ja p<0,05 korral kollaseks.
- 2. Millised on erinevate lihakvaliteedinäitajate vahelised seosed sigadel?
 - Arvutage uuele töölehele kõigi lihakvaliteedinäitajate vahelised lineaarsed korrelatsioonikordajad (*Data*-sakk \rightarrow *Data Analysis*... \rightarrow *Correlation*).
 - Kasutades Exceli tingimusvormindamist värvige oranžiks kõik tugevad seosed ($|r| \ge 0,7$) ja kollaseks kõik keskmise tugevusega seosed ($|r| \ge 0,3$), samuti proovige nö sujuvat vormingut, kus korrelatsioonikordaja väärtusele -1 vastab sinist, väärtusele 0 valget ja väärtusele 1 punast värvi lahter (tehke korrelatsioonikordajate tabelist koopia – kopeerige vaid väärtused – ja rakendage sujuvat vormingut seal).
 - Arvutage korrelatsioonikordajate statistilist olulisust väljendavad p-väärtused (analoogsesse tabelisse nagu korrelatsioonikordajadki);
 - \circ vormindage p-väärtuste tabel kasutades eelmisel töölehel paiknevate t-testi tulemuste vormingut (*Copy* → *Paste Special* → *Formats*),
 - o seejärel tehke koopia algse korrelatsioonikordajate tabeli väärtustest (st ärge kopeeriga vormingut) ning vormindage see hoopis p-väärtustele tuginedes, värvides (ikka Exceli tingimusvormindamist kasutades) punaseks kõik korrelatsioonikordajad, mille korral p<0,001, oranžiks korrelatsioonikordajad, mille korral p<0,001, ja kollaseks korrelatsioonikordajad, millele vastav p<0,05.
 - Lisaülesanne (ei ole kohustuslik) neile, kellel huvi on ja soov demonstreerida, et oskate :) Uurige, kas tunnuste 'Temp 45min' ja 'Temp 24h' vaheline seos sõltub sigade pidamiskeskkonnast – leidke nimetatud tunnuste vahelised lineaarsed korrelatsioonikordajad nii tavapärases kui ka külmlaudas peetud sigadel ning illustreerige seost hajuvusdiagrammiga, kus erinevatele pidamistingimustele vastavad väärtused on tähistatud erinevalt (lisaks võite seoste enam esile toomiseks lisada punktiparvele regressioonisirged).

Praktikumi kolmas ülesannete blokk baseerub teie endi sammumustri analüüsil, tutvustab lihtsamaid ajas korduvalt mõõdetud näitajate analüüsivahendeid ja seda, kuidas kasutada vastavate analüüside tegemiseks Exceli võimalusi.

3. Avage Excelis isiklik andmetabel, mis sisaldab kõndimisel registreeritud vasaku ja parema jala poolt avaldatud jõudu. Salvestage avatud fail koheselt Exceli formaadis.

Antud andmete näol on tegu statsionaarse aegreaga, st et mõõtmised on sooritatud ajas võrdsete ajavahemike tagant – antud andmestikus 0,1-sekundiliste intervallidega.

• Lihtsaim viis ajas (või ka ruumis) korduvalt mõõdetud väärtustest esmase ülevaate saamiseks ja sageli ka muutumise struktuuri tuvastamiseks on illustreerida andmeid joonisega, kus *x*-teljel on mõõtmishetked (kohad) ja *y*-teljel mõõdetud väärtused.

Tehke taoline joonis oma andmete põhjal, pannes ühele joonisele nii parema kui ka vasaku jala poolt avaldatud jõud.

- Pange mõlema jala tarvis kirja maksimaalsed väärtused.
- Konstrueerige mõlema jala tarvis sagedustabelid, arvutage sealt suhtelised sagedused, esitage need protsentides ja illustreerige histogrammidega.

Eesrindlikumad võivad püüda eraldi juhendi alusel konstrueerida matemaatiliselt korrektse histogrammi (parasjagu trikitamist nõuab *x*-telje ühikute nö pidaval skaalal ja õiges kohas esitamine).

- Arvutage 0. kuni k.-järku autokorrelatsioonikordajad kummagi jala tarvis ja illustreerige saadud kordajaid diagrammiga (ühele graafikule võite panna mõlema jala kohta arvutatud autokorrelatsioonikordajad). Kui esimeste ja/või viimaste sekundite (kümnendike) mõõtmistulemused ei ole korrektsed, ärge neid autokorrelatsioonikordajate arvutamisel kasutage. Korrigeerige arvutatavate autokorrelatsioonikordajate järku vastavalt oma sammumise kestvusele (näiteks 100.-järku autokorrelatsioonikordaja arvutamine võiks eeldada vähemalt 11-sekundilist sammumist).
- Konstrueerige hajuvusdiagramm illustreerimaks vasaku ja parema jala poolt ajahetkel rakendatud jõudude vahelist seost. Püüdke punktiparvest läbi sobitada nii sirget kui ka parabooli, mõlemal juhul laske Excelil välja kirjutada ka R^2 väärtus. Kui vasak ja parem jalg liiguvad ühte moodi, peaks kõik punktid paiknema sirgel, punktiparve pisut kõverakujuline (paraboolne) paiknemine vihjab jalgade mitte päris ühesugusele liikumisele.
- Mida te oskate veel öelda oma sammumustri kohta? Rõhuvad parem ja vasak jalg maapinda ühesuguse tugevusega? On samm ühtlane? Mõlema jala puhul? Milline on sammusagedus?

---- Ülesanne 1 ---

1. Arvutage kõigi lihakvaliteedinäitajate kohta keskmised, minimaalsed ja maksimaalsed väärtused ning standardhälbed sõltuvalt pidamiskeskkonnast (tavaline või külmlaut).

	A	В	с	D	E	F	G	H I J K L M H O P O R S T dess % in 845min kmm x5min 1824b, kmm24b, BackFall BackFall BackFall BackFall BackFall BackFall BackFall BackFall						т	U						
1	Serial No	Place	Id_od	Feed	LWDbs 1.4	WCW	ccw	dress.%	pH+Smin	lemp 45m	pH24h	kmp24	BackFalt	BackFal2	BackFal3	BackFal4	Mealpol	Mois kre	Prolein	Fal	Ash
2	1	SLT	Contentional	Domest	97	71,6	70,2	72,3	6,2	35,3	5,9		3 17	19	17	37	49	70,9	22	5,55	1,23
3	2	SLT	Conventional	Domesta	105	74,5 67,2	13	68,8	5,9	37,4	5,9	3	s 17 3 13	18	13	29	57,4	69.9	23,7	6,22	1,21
5	4	SLT	Contentional	Import	111	81,8	80,2	72,2	5,8	37,5	5,9	3,3	3 14	13	15	38	60	70,5	23,6	4,28	1,18
6	5	SLT	Contentional	Domeste	90	64,4	63,2	70,2	6,4	38	5,8	3,5	5 16	17	14	33	57,6	69,8	23	4,87	1,16
7	6	SLT	Contentional	Import	112	82	80,4	71,7	6,2	36,6	5,9	2,	3 19	20	17	30	57,2	70,2	22,5	5,28	1,23
9		SLI	Conventional	Domeste	102	68	- /1,4	67.4	5,9	38,3	5,9	-	s 12 3 14	13	9	25	53.4	69	23,3	5,99	1,18
10	9	SLT	Conventional	Domest	96	66,2	65	67	5,8	38,4	5,9		3 14	13	11	40	60,5	70,2	23	4,91	1,19
11	10	SLT	Conventional	Domest	100	71,6	70,4	70,4	6,2	37,3	5,9		3 12	16	15	37	57,1	70,9	23	5,48	1,23
12	11		Conventional	Domest	104	74,6	73,2	70,3	6,3	37,9	5,9	2,9	9 15	13	10	26	58,6	70	22,7	5,56	1,19
14	12	SLT	Contentional	Import	109	73.4	72,2	70.7	6,4	39,1	5,9		3 14	13	11	33	60.3	70,5	23,4	4.58	1,17
15	14	SLT	Conventional	Import	107	78	76,8	71,7	6,1	38,1	6		3 9	12	9	35	55,1	70	22	5,03	1,29
16	15	SLT	Contentional	Domest	112	75,8	74,6	66,6	5,8	36,8	6	З,	1 14	15	13	37	59,6	70,8	23,4	6,51	1,17
17	16		Contentional	Domest	103	73,6	72,4	70,2	6,4	38	6	2,5	9 15	14	10	25	60,9	72,3	22,3	4,08	1,14
19	18	SLT	Contentional	Domeste	91	66.6	65.6	72	6	38,7	5,9	2.5	9 10	11	10	45	54.2	70.9	23,5	4.76	1,37
20	19	SLT	Contentional	Import	111	79,8	78,6	70,8	5,9	37,2	6,1	3,	2 15	17	14	34	60,6	67	24	5,18	1,1
21	20	SLT	Contentional	mpori	102	68,6	67,2	65,8	5,7	38,6	5,8	2,5	9 20	18	15	36	58	68,4	22	7,96	1,17
23	21	LP	Contentional	Import	105	73.1	70.8	72.2	6	35,1	5,7	2,	2 9	13	12	25	55.6	68,81	23,9	7.33	1,11
24	23	LP	Conventional	Import	107	79,1	76,6	74,3	6	39,4	5,7	2,3	3 13	16	15	35	57,8	71,33	22,3	8,6	1,08
25	24	LP	Contentional	Import	108	75,1	73,2	74,6	6,4	37,2	5,7	2,	3 10	10	12	28	59,7	67,2	22,6	8,2	1,03
25	25		Conventional	Import	109	72,2	71	73,9	5,7	36,8	5,7	2,	2 15	18	20	+0	59,2	69,79	23	4,85	1,15
28	25	LP	Contentional	Import	111	74.9	72,6	76.4	6,3	+0,2	5,5	1.5	9 13	14	15	+0	53,5	70,35	22,3	5,6	1,25
29	28	LP	Contentional	Import	112	81,2	79	75,2	6	38,5	5,7	1,5	9 13	20	14	20	59,2	71,01	22,9	4,82	1,1
30	29	LP	Contentional	mport	113	72,7	70,6	73,5	6	40,3	5,7	2,	15	16	18	30	58,7	70,95	22,9	3,75	1,09
31	30	LP	Contentional	Domest	114	13,8	71,4 65,6	74,3	6,5	39,8	5,1	2,	12	15	13	32	47,9	68.5	22,1	4,34	1,11
33	32	LP	Contentional	Domes	116	63,4	61,6	70,8	6,3	39,2	5,7	2,	8	11	12	25	51,8	68,5	20,7	4,58	1,14
34	33	LP	Contentional	Domeste	117	66,4	64,8	69,6	5,9	39,1	5,9	2,5	18	17	16	34	54,2	69,16	22,4	2,31	1,1
35	34		Conventional	Domes I	118	72,5	70,2	71,6	6,1	39,7	5,9	2,	5 14	13	9	35	59,3	72,63	22,7	2,34	1,25
37	36	LP	Contentional	Domeste	120	63	60.6	70.4	6,2	40.1	5,8	2,	5 11	12	10	20	57.1	68.1	22,5	7.79	1.12
38	37	LP	Conventional	Domest	121	74	71,8	72,5	6,2	39,6	5,8	2,7	15	15	10	20	55	71,12	22,5	4,69	1,19
39	38	LP	Conventional	Domest	122	73,2	71,2	71,2	6	38,2	5,8	2,	12	16	13	25	63,1	72,4	20	6,01	1,22
40	39		Conventional	Domest	124	72,2	70	74,4	65	39,7	5,8	2,	5 15	10	12	20	50,5	638	20,3	12,43	1,03
42	+1	SLT	OuHoor	Import	107	81,4	79,6	74,3	6,2	36	5,9	3,6	5 15	20	30	15	58,4	72	21,1	5	1,15
43	42	SLT	OuHoor	Import	113	82,2	78,6	69,5	5,6	35,7	5,9	3,5	5 13	21	+1	16	56,7	69,6	23,2	4,94	1,15
44	43		Ouldoor	Import	111	80,2	78,5	70,8	5,8	37,2	59	3,7	16	22	43	16	56,3	71,6	22	4,8	1,18
45	45	SLT	OuHoor	Import	112	88.8	87.2	74.5	6.1	37.3	5,9	3,	5 15	15	+1	16	57,7	72,5	21.4	+,55	1,05
47	46	SLT	OuHoor	Import	122	90,2	88,4	78,9	6,3	36,7	5,9	3,5	9 19	17	38	14	58,4	70,3	20,7	6,73	1,1
48	47	SLT	OuHoor	Import	112	82	80,2	71,5	6	36,6	6	3,5	9 19	17	34	11	57,6	71,8	21,5	5,6	1,1
49	48		Ouldoor	Import	119	87,4	85,5	71,9	5,4	33,9	6	39	20	25	50	20	55,5	69,7	20,5	7,88	1,07
51	50	SLT	OuHoor	Import	122	94	92	75,4	5,8	36,2	5,9	3,5	9 15	18	35	16	59,2	71,6	21,7	5,5	1,07
52	51	SLT	OuHoor	Domest	108	81	79,4	73,5	5,7	37,2	6,1	3,	2 16	17	36	18	57,6	71,1	20,8	6,92	1,12
53	52		Ouldoor	Domes I	109	81,4	79,8	73,2	6,3	36,9	6,1	3,	17	24	33	18	51,9	69,5	22,2	5,87	1,13
55	54	SLT	OuHoor	Domeste	104	77,8	76,2	74.7	6,5	35,5	5.1	3.3	3 12	21	30	15	+0,1 59,6	68.4	22,5	7.56	1.04
56	55	SLT	OuHoor	Domest	99	76,4	75	75,7	5,8	36,9	5,6	3,5	9 17	22	40	14	55,2	70,2	23,1	5,7	1,03
57	56	SLT	Ouldoor	Domest	115	83,2	81,4	70,7	6	35,7	5,9	3,	5 14	13	35	10	55,3	71,2	23,8	2,97	1,2
59	57	SLT	Oulidoor	Domesto	106	87.6	75,5	71,3	56	36,7	61	37	19	12	35	10	51,3	71	23	4,04	1,07
60	59	SLT	OuHoor	Domest	107	77,4	75,8	70,8	5,5	36,7	6,1	3,6	5 16	18	30	15	57,7	71	21	7,01	0,98
61	60	SLT	Ouldoor	Domest	104	77,6	76	73	5,6	37,3	6,1	3,	3 13	16	38	12	62	70,8	22,5	5,36	1,14
62	61		Ouldoor	Domeste	113	84,7	83,1	73,5	6,1	36,9	5,9	4,5	27	21	16	40	58,4	70,04	23,7	4,18	1,17
64	63	LP	OuHoor	Domest	116	87,4	86	74,1	5,9	37,4	5,9	4.	13	15	13	35	55,7	67,1	23,8	7,2	1,07
65	64	LP	Ouldoor	Domeste	107	75,4	73,6	68,7	5,9	38,2	5,9	5,	15	16	16	35	59,3	71,22	23,1	3,66	1,25
65	65		Ouldoor	Domes lo	116	82,9	81,2	70	5,7	38,9	5,9	4,	5 22	14	10	30	53,9	68,2	22,7	4,82	1,15
68	67	LP	OuHoor	Domeste	118	87,9	86,2	73	6,6	38	5,8	+.	25	18	16	**	56,8	65,46	22,3	11,14	1,04
69	68	LP	OuHoor	Domest	115	85,7	83,4	72,5	5,8	37 ,8	5,9	4,3	3 17	15	12	35	58,4	70	22,7	5,34	1,18
70	69		Ouldoor	Domest	110	86,9	84,2	76,5	6,1	38,9	5,8	4,0	10	14	12	+0	53,5	68,98	23	4,9	1,09
72	71	LP	OuHoor	Import	119	81.1	79,2	72	5.7		5,9	+,: +,:	12	24	10	+5	59,3 62,7	68,49	19	2,56	1,13
73	72	LP	OuHoor	Import	119	90,6	88,6	74,4	6,3	39	5,9	5,	17	24	21	40	64,9	70,82	23,5	2,9	1,2
74	73	LP	Ouldoor	mport	116	86,4	82,8	71,3	5,8	39,5	5,8	5,3	3 21	16	15	36	57,1	66,07	22,2	6,22	1,14
75	74		Ouldoor	Import Import	107	79,1	76,8	71,7	6,1	40,8	5,7	5,	12	15	8	32	64,2	70,53	23,5	3,65	1,29
77	76	LP	Ouldoor	Import	-111	82,9	80,4	72,4	6,4	39,9	5,8	4.1	10	13	9	45	63,3	68,07	21,7	6,12	1.14
78	77	LP	OuHoor	Import	116	84,8	82,6	10	A T.			-	Kaali				_		ACE		.3
79	78		Ouldoor	mpori	108	78,9	75,8	718	4 I a	vapara	ine		Neskr	nine			=,	AVER	AGE(EZ:E4	1) 13
81	80	LP	OuHoor	Import	118	85,1		7 8	5 (Co	onveni	tional)		Stand	ardhä	lve		=	STDE	V.S(E	2:E41) 19
82		-					/		6				Mir				_		2. 644	1)	<u> </u>
83			Real and an				/	0	0		_		wiin				=	VIIIV(E	Z.E4	9	
84	Tatapara (Conversion	ne Ional'i	Keskmine Slandardbæve	•	 AVERAG STDEWE 	E(E2:E41)	,	8	7				Max				=	MAX(E	E2:E4	1)	
86		S1142/	Mn		-MIN(E2:E	41)		88					1								
87			Max		-MAX(E2:	E41)		00 Külmlaut Kashmina - AVEDAGE													
88	V(Index)	1	Variation		- AVED AC	E/E/2/E2	5	89 Külmlaut Keskmine =AVERAG					AGE(E42:E	81)						
90	(Ouldoor	2	Slandardhäle	e	-STDEWE	E42:E81)	<i>v</i>	90 (Out-door) Standardhälve =STDEV St						12.00	an H						
91			Mn		-MIN(E42:	E81)		of (Our-door) Standardnaive -STDEV.S(E					42.E0								
92			Max		-MAX(E42	::E81)		91 Min =MIN(E42:E81)						31)							
								92 Max =MAX(E42:E81)													
									92 Max =MAX(E42:E8						51)						

	A	в	C	D	E	F	G	н	1	J	ĸ	L	M	N	0	P	Q	R	S	т	U
78	77	LP	Out-door	Import	116	84,8	82,6	71,2	6	41,4	5,9	5,1	12	13	11	37	58,6	69,58	20,8	5,42	1,3
79	78	LP	Out-door	Import	108	78,9	75,8	70,1	5,4	41,9	5,8	4,8	17	19	18	46	58,2	69,4	21	3,8	1,23
80	79	LP	Out-door	Import	118	89,7	87,4	74	5,7	40,4	5,8	4,8	9	10	11	39	60,3	67,62	22,2	8,09	1,12
81	80	LP	Out-door	Import	118	86,1	84	71,1	6,4	39,1	5,8	4,9	16	16	13	35	57,5	67,07	22,8	4,73	1,19
82																					
83																					
84	Tavapär	ane	Keskmine		108,925																
85	(Conven	tional)	Standardhälv	e	8,60646																
86			Min		90																
87			Max		124																
88																					
89	Külmlau	t	Keskmine		112,1																
90	(Out-doo	0	Standardhälv	e	5,80804																
91			Min		99																
92			Max		124																
00																					

2. Teostage t-testid selgitamaks keskmiste kvaliteedinäitajate erinevuse statistilist olulisust. (NB! Õige t-testi valimiseks tuleb eelnevalt teostada dispersioonide võrdlus F-testiga).

	A		R	0	P	F	6	C
1	Certal #4	PL	ace	ld od	Feed	EWDbs 1.4	WCW	ccw
2	1	SL	Т	Contentional	Domes	97	71,6	70
3	2	SĽ.	г	Conventional	Import	105	74,6	7
4	3	SĽ.	T	Contentional	Domesto	97	67,2	e
5	+	SL.	Г Т	Conventional	Import Domestic	111	81,8	63
7	6	SL.	r T	Conventional	Import	112	82	80
8	7	SL.	т	Conventional	Import	102	73	71
9	8	SĽ.	т	Conventional	Domesto	99	68	66
10	9	SĽ.	Т	Contentional	Domesia	96	66,2	e
11	10	SĽ.	Т	Contentional	Domesto	100	71,6	70
12	11	SL	T T	Conventional	Domes to	104	74,5	73
14	13	SL.	r T	Conventional	Import	105	73.4	72
15	14	SL.	т	Conventional	Import	107	78	76
16	15	SL.	Т	Conventional	Domes Io	112	75,8	74
17	16	SĽ.	Т	Conventional	Domesto	103	73,6	72
18	17	SĽ.	Т	Contentional	Import	116	83,4	8
19	18	SL	T T	Conventional	Domes to	91	66,5 70.0	55
20	20	SL.	r T	Conventional	Import	102	68.6	67
22	21	LP		Conventional	Import	105	77,9	75
23	22	LP		Conventional	Import	106	73,1	70
24	23	LP		Conventional	Import	107	79,1	76
25	24	LP		Contentional	mport	108	75,1	73
25	25	LP		Contentional	Import	109	72,2	71
28	27	LP		Contentional	Import	111	74.9	72
29	28	LP		Contentional	Import	112	81,2	7
30	29	LP		Contentional	Import	113	72,7	70
31	30	LP		Contentional	Import	114	73,8	71
32	31	LP		Conventional	Domesto	115	68,6	66
34	32	LP		Contentional	Domesto	115	65.4	64
35	34	LP		Conventional	Domesto	118	72,5	70
36	35	LP		Conventional	Domesto	119	71,2	69
37	36	LP		Conventional	Domesto	120	63	60
38	37	LP		Conventional	Domesic	121	74	71
39	.80	LP		Contentional	Domes to	122	72.2	- 17
41	40	LP		Contentional	Domeste	124	76.5	74
42	+1	SL.	г	OuHdoor	Import	107	81,4	79
43	+2	SĽ.	т	OuHoor	Import	113	82,2	78
44	+3	SĽ.	Т	OuHoor	Import	111	80,2	78
45	44	SL	T T	Ouldoor	mport	112	82	80
40	45	SL.	I T	Oul-toor	mpori	117	90.2	87
48	47	SL.	r T	Ouldoor	Import	112	82	80
49	48	SL.	Т	OuHdoor	Import	119	87,4	85
50	49	SĽ.	г	OuHoor	Import	124	91,6	89
51	50	SĽ.	Т	Oul-door	mport	122	94	2
52	51	SL.	r T	Oukloor	Domes to	108	81	79
54	53	SL.	r T	Ouldoor	Domesto	104	76.2	74
55	54	SL.	Т	Oul-door	Domesto	102	77,8	76
56	55	SĽ.	Т	OuHoor	Domesia	99	76,4	7
57	56	SĽ.	T	OuHdoor	Domesto	115	83,2	81
58	57	SL	T T	Ouldoor	Domesto	105	11,2	75
59		SL.	r T	Ouldoor	Domesto	107	87,5	75
61	60	SL.	r T	OuHoor	Domesto	104	77.6	7
62	61	LP		OuHoor	Domesto	113	84,7	83
63	62	LP		OuHoor	Domesto	106	75,8	74
64	63	LP		Ouldoor	Domesto	116	87,4	8
66	64	LP		OUNION	pomesto Domesto	107	75,4	73
67	66	LP		OuHloor	Domesto	113	85.8	8
68	67	LP		OuHloor	Domesto	118	87,9	86
69	68	LP		OuHloor	Domesto	115	85,7	83
70	69	LP		OuHloor	Domesto	110	86,9	84
71	70	LP		ouldoor	pomes lo	108	79,2	77
73	72	LP		Oukloor	mport	119	90.6	88
74	73	LP		OuHoor	Import	116	85.4	82
75	74	LP		OuHoor	Import	107	79,1	76
76	75	LP		OuHloor	Import	110	81	79
77	76	LP		Oukloor	Import	111	82,9	80
79	79	LP		Ouldoor	Import	109	8+,8 78 9	75
80	79	LP		OuHoor	Import	118	89,7	87
81	80	LP		OuHloor	Import	118	85,1	8
82								
83	Taur			Ka alau luur		100.077		
84	Correspond	ane Lore	aD.	Restmine Standardb//www		108,925 8,60646	73,115 5 1000	5 0626
85	onien	l		Min		3,50545	5,1003	60
87				Max		124	83.4	8
88								
89	Kümla	ı	_	Keskmine		112,1	83,1975	81,252
90	OUHIC	0		⊜randardhäive Min	•	5,80804	4,85003	4,7772
92				Max		124	94	13
93								-
94			-					

F-test, mis võrdleb varieeruvust (dispersioone), tuleb enne keskmiste t-testiga võrdlemist teostada põhjusel, et t-testi arvutuseeskiri sõltub sellest, kas varieeruvus võrreldavais gruppides on ühesugune või mitte.

Kiireim võimalus nimetatud testide teostamiseks MS Excelis on kasutada vastavaid funktsioone (F.TEST ja T.TEST), mis mõlemad väljastavad **olulisuse tõenäosuse** (**p-väärtuse**).

Olulisuse tõenäosus mäletatavasti näitab, kui suur on tõenäosus eksida, deklareerides erinevuse (või seose või mõju vmt) olemasolu, ja standardne lähenemine on, et kui p < 0,05, siis loetakse erinevus statistiliselt oluliseks (piisavalt usaldusväärselt tõestatuks), ja kui $p \ge 0,05$, siis ei ole erinevus statistiliselt oluline (enamasti konstateeritakse siis, et erinevust pole).

MS Excelis võib esmalt teostada F-testi ja selle tulemusest lähtuvalt valida õige t-testi:

 \circ kui F-testi tulemus on väiksem kui 0,05, siis tuleks teostada 3. tüüpi t-test (uuritava tunnuse varieeruvus võrreldavais gruppides on erinev);

• kui aga F-testi tulemus on suurem (või võrdne) kui 0,05, siis tuleks teostada 2. tüüpi t-test (uuritava tunnuse varieeruvus võrreldavais gruppides on ühesugune).

Järgnevalt võib funktsiooni F.TEST kopeerida jällegi kõigi veergude alla. Funktsiooni T.TEST nii lihtsalt kopeerida ei saa, kuna selle arvutuseeskiri sõltub F-testi väärtusest – kui t-testi funktsioon kopeerida, tuleb vajadusel ise muuta funktsiooni viimast argumenti (kas 2-ks või 3-ks).

Alternatiiv on kasutada loogikafunktsiooni IF koos funktsioonidega F.TEST (mis määrab tingimuse) ja T.TEST (mille tüüp valitakse automaatselt vastavalt F-testi tulemusele):

F-test	0,0159493							
t-test	0,057251							
t-test	=IF(F.TEST(E	2:E41;E42:E81)<	=0,05;T.TES	T(E2:E41;E	42:E81;2;3);T	TEST(E2:E	41;E42:E81;	2;2))
	IF(logical_tes	t; [value_if_true]; [va	lue_if_false])					

E98	3 🗕 🌔	<i>f</i> _x =	IF(F.TEST(E2:E41;E42	:E81)<=0,0	5;T.TEST(E2:E41;E4	2:E81;2;3)	;T.TEST(E2:E	41;E42:E8	1;2;2))									
	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U
1	Place	id_od	Feed	LWDbs1.4	WCW	CCW	dress.%	pH45min	temp45mi	pH24h	temp24h	BackFat1	BackFat2	BackFat3	BackFat4	Meatpct	Moisture	Protein	Fat	Ash
80	LP	Out-door	Import	118	89,7	87,4	74	5,7	40,4	5,8	4,8	9	10	11	39	60,3	67,62	22,2	8,09	1,12
81	LP	Out-door	Import	118	86,1	84	71,1	6,4	39,1	5,8	4,9	16	16	13	35	57,5	67,07	22,8	4,73	1,19
82																				
83																				
84	ine	Keskmine		108,925	73,115	71,415	71,4825	6,1175	38,3925	5,835	2,7025	13,775	14,675	12,9	31,1	57,0725	69,6535	22,6225	5,80525	1,1635
85	tional)	Standardhälv	/e	8,60646	5,1003	5,06256	2,54457	0,24588	1,2970158	0,11447	0,393855	2,69365	2,92108	2,95088	5,96055	3,81065	1,9091	0,86424	2,13605	0,09206
86		Min		90	63	60,6	65,8	5,7	35,1	5,6	1,9	8	9	8	20	47,9	63,8	20	2,31	1
87		Max		124	83,4	82	76,4	6,8	40,3	6,1	3,5	20	20	20	45	63,7	72,63	24	12,63	1,57
88																				
89		Keskmine		112,1	83,1975	81,2625	72,6025	5,96	37,8825	5,905	4,1725	16,55	17,1	25,25	26,075	57,74	69,9195	22,07	5,4745	1,137
90	r)	Standardhälv	/e	5,80804	4,85003	4,77723	2,05669	0,30365	1,7366173	0,11972	0,6417075	4,78754	3,84841	12,5734	12,1937	3,29963	1,70609	1,10829	1,67247	0,07432
91		Min		99	75,4	73,6	68,7	5,4	33,9	5,6	3,2	9	10	8	10	48,1	65,46	19	2,56	0,98
92		Max		124	94	92	78,9	6,6	41,9	6,1	5,4	32	25	50	46	64,9	72,6	23,8	11,14	1,3
93																				
94																				
95		F-test		0,015949																
96		t-test		0,057251																
97									*****		*****									
98		t-test		0,057																

3. Kasutades Exceli tingimusvormindamist, värvige kõik statistiliselt olulistele erinevustele vastavaid p-väärtusi sisaldavad lahtrid – kui p<0,001, siis punaseks, p<0,01 korral oranžiks ja p<0,05 korral kollaseks

t-test	0,05725 8,2E-14 1,4E-13 0,03344 0	0,01275 0,1407497 0,00916 1,129E-18 0,00221 0,00215 3E-07 0,02275 0,40488 0,51307 0,01504 0,44299 0,1606
		Home-sakk \rightarrow Conditional Formatting \rightarrow New Rule
	Formatting as Table * Styles *	New Formatting Rule
	Highlight Cells Rules >	Select a Rule Type:
	<u>I</u> op/Bottom Rules →	Format only cells that contain Format only top or bottom ranked values
	Data Bars →	 Format only values that are above or below average Format only unique or duplicate values Lise a formula to determine which cells to format
	Color <u>S</u> cales	Edit the Rule Description:
	Icon Sets	Format only cells with: Cell Value Items than or equal to 0,001
	Mew Rule ♥ Clear Rules	not between equal to not equal to
	Manage <u>R</u> ules	Preview: greater than less than greater than or equal to
	Tingimus, mille täidetuse korral selek vormindatakse	teeritud lahtrid soovitud viisil.

Täiendava tingimuse lisamiseks: Home-sakk → Conditional Formatting → Manage Rules...

Conditional Formatting Rules Manager	Conditional Format Cell
Show formatting rules for: Current Selection	Formatting as Table Styles Highlight Cells Rules
New Rule Y Delete Rule Rule (applied in order shown) Format Applies to	Iop/Bottom Rules ►
Cell Value <= 0,001	Data Bars
	Color <u>S</u> cales ►
	Icon Sets
	Image: Image
OK Close Apply	Manage <u>R</u> ules

Lisage vormindamise reeglid nii p<0,01 kui ka p<0,05 tarvis:

Conditional Formatting Ru	iles Manager			? 🗙
Show formatting rules for: Cur	rent Selection			
📑 New Rule 🕑 Edit I	Rule X <u>D</u> elete Ru	le 🔺 🔽		
Rule (applied in order shown)	Format	Applies to		Stop If True
Cell Value < 0,001	AaBbCcYyZz	=\$E\$98:\$U\$98		
Cell Value < 0,01	AaBbCcYyZz	=\$E\$98:\$U\$98		
Cell Value < 0,05	AaBbCcYyZz	=\$E\$98:\$U\$98		
				~
		ОК	Cancel	Apply

Nipid, märkused, soovitused.

Teades ette, et soovite rakendada mitut erinevat vormindamise reeglit, on mõttekas valida koheselt *Home*-sakk \rightarrow *Conditional Formatting* \rightarrow *Manage Rules*... Sellest aknast saate

- lisada, muuta ja kustutada vormindamise reegleid ja tingimusi nii parajasti aktiivsete lahtrite kui ka teiste töölehtede ja andmepiirkondade tarvis,
- vaadata eelvaadet vormindamisreeglite rakendamise tulemusest (nupp Apply),
- muuta vormindamistingimuste järjekorda (nupud ▲) viimase muutmine võib osutuda vajalikuks, kui reeglite kirjapanekul on meelest läinud see, et Excel täidab vormindamise reegleid alt ülespoole, ehk järjekorras eespool (kõrgemal) paiknevad reeglid kirjutavad allpool olevad üle.

Tulemus peale kolme reegli rakendamist:

Place	id_od	Feed	LWDbs1.4	WCW	CCW	dress.%	pH45min	temp45mi	pH24h	temp24h	BackFat1	BackFat2	BackFat3	BackFat4	Meatpot	Moisture	Protein	Fat	Ash
	t-test		0,057	0,000	0,000	0,033	0,013	0,141	0,009	0,000	0,002	0,002	0,000	0,023	0,405	0,513	0,015	0,443	0,161

---- Ülesanne 2 ----

1. Arvutage uuele töölehele kõigi lihakvaliteedinäitajate vahelised lineaarsed korrelatsioonikordajad :

Data-sakk \rightarrow Data $Analysis... \rightarrow$ Correlation

	В	с	D	E	F	G	н		J	к	L	м	H	0	Р	Q	R	8	т	U
1	Place	Id_od	Feed	LWDbs 1.4	WCW	CCW	dress.%	H+Smin	lemp 45ml	pH24h	kmp24h	BackFall	BackFal2	BackFal3	BackFal4	Meapel	Mols kre	Prolein	Fal	Ash
2	SLT	Contentional	Domesto	97	71,6	70,2	72,3	6,2	35,3	5,9	3	17	19	17	37	49	70,9 68 3	22	5,55	1,23
4	SLT	Contentional	Domesto	97	67.2	66	68	5,5	37.3	5,5	3.3	13	20	15	25	57.1	69,9	23,7	5.17	1.12
5	SLT	Conventional	Import	111	81,8	80,2	72,2	5,8	37,7	5,9	3,3	14	13	15	38	60	70,5	23,6	4,28	1,18
6	SLT	Conventional	Domesto	90	64,4	63,2	70,2	6,4	38	5,8	3,5	16	17	14	33	57,6	69,8	23	4,87	1,16
1	SLT	Contentional	Import	112	82	80,4	71,7	6,2	36,6	5,9	2,8	19	20	17	30	57,2	70,2	22,5	5,28	1,23
- ×	SLT	Contentional	Inport Domes Io	102	68	66.8	67.4	5,9	38,3	5,9	3	12	13	8	- 25	52,7		23,3	5,99	1,18
10	SLT	Conventional	Domesto	96	66,2	65	67	5,8	38,4	5,9	3	14	13	11	40	60.5	70,2	23	4.91	1.19
11	SLT	Conventional	Domesto	100	71,6	70,4	70,4	6,2	37,3	5,9	3	12	16	15	37	57,1	70,9	23	5,48	1,23
12	SLT	Conventional	Domesto	104	74,6	73,2	70,3	6,3	37 ,9	5,9	2,9	15	13	10	26	58,6	70	22,7	5,56	1,19
13	SLT	Conventional	Import	109	76,2	74,8	68,6	6,2	39,7	5,9	3	17	16	17	35	57	70,6	22,4	5,49	1,17
14	SLI	Conventional	Import	102	73,4	76.9	70,7	6,4	38,4	6	3	14	13	- 11	33	60,3	70,7	23,2	4,58	1,150
16	SLT	Conventional	Domesto	112	75.8	74,6	66,6	5.8	36.8	6	3.1	14	15	13	37	59,6	70,8	23.4	6,51	1,175
17	SLT	Conventional	Domesto	103	73,6	72,4	70,2	6,4	38	6	2,9	15	14	10	25	60,9	72,3	22,3	4,08	1,14
18	SLT	Conventional	Import	116	83,4	82	70,6	6	38,5	5,8	3,1	12	15	11	30	50,5	69,4	23,9	3,53	1,57
19	SLT	Conventional	Domesto	91	66,6	65,6	72	6	38,7	5,9	2,9	10	11	10	45	54,2	70,9	22,6	4,76	1,22
20	SLT	Contentional	Import	102	68.6	67.2	65.8	5,9	37,2	58	29	20	17	14	34	50,5	68.4	24	5,18	1,16
22	LP	Conventional	Import	105	77,9	75.6	72	6,2	35,1	5,7	2,2		11	12	30	56.1	71.14	23,9	6,95	1.1
23	LP	Conventional	Import	105	73,1	70,8	72,2	6	37,5	5,7	2,2	15	13	10	25	55,6	68,81	22,6	7,33	1,11
24	LP	Contentional	Import	107	79,1	76,6	74,3	6	39,4	5,7	2,3	13	16	15	35	57,8	71,33	22,3	8,6	1,08
25	LP	Contentional	Import	108	75,1	73,2	74,6	6,4	37,2	5,7	2,3	10	10	12	28	59,7	67,2	22,6	8,2	1,03
20	LP	Contentional	import Import	109	72,2	71	73,9	5,7	35,8	5,7	2,2	15	18	20	+0	59,2	69,79	23	4,85	1,15
28	LP	Contentional	Import	111	74,9	72,6	76.4	6,3	40,3	5,5	1.9	13	14	15	-0	53,5	70.35	22,3	5.6	1.2
29	LP	Contentional	Import	112	81,2	79	75,2	6	38.5	57	19	13	20	14	20	59.2	71.01	22.9	4.82	1,1
30	LP	Conventional	Import	113	72,7	70,6	73,5	Com	1.4											1,09
31	LP	Conventional	Import	114	73,8	71,4	74,3	Cor	relatio	n										1,11
32	LP	Contentional	Domesto	115	63.4	61.6	70.9												_	114
34	LP	Conventional	Domesto	117	66.4	64.8	69,6	/ Inp	ut											1.1
35	LP	Conventional	Domesto	118	72,5	70,2	71,6	I	wit Diano				+=+++	utori.	(-		ОК		1,25
36	LP	Conventional	Domesto	119	71,2	69,2	74,4	1 1 1 1	Juc Kang	je:		E E	\$C\$1;\$	μοφοι					5	1,21
37	LP	Conventional	Domesto	120	63	60,6	70,4						~ .					ancel		1,12
1	LP	Contentional	Domesto	121	732	71,8	712	Gro	ouped By	/:			•) <u>C</u> olu	IMNS						1,19
40	LP	Conventional	Domesto	123	72,2	70	74.4					1								1.03
41	LP	Conventional	Domesto	124	76,5	74,6	74,6						<u> </u>	15				Help		1,14
42	SLT	OuHoor	Import	107	81,4	79,6	74,3		Labels i	in First	Row								_	1,15
+3	SLT	Ouldoor	Import	113	82,2	78,6	69,5		Egeolo I											1,15
45	SLT	Oubloor	Import	112	82	80.4	71.7													1.14
46	SLT	OuHdoor	Import	117	88,8	87,2	74,5	∥ _C Out	tput opti	ons —										1,05
47	SLT	OuHoor	Import	122	90,2	88,4	78,9			_					(1,1
48	SLT	Oul-door	Import	112	82	80,2	71,6		<u>O</u> utput	Range						<u> </u>				1,1
49	SLT	Ouldoor	Import	119	87,4	85,5	71,9				- L DL									1,07
51	SLT	OuHdoor	Import	122	94	92	75.4		New w	orksne	et <u>P</u> iy:					_				1.07
52	SLT	OuHdoor	Domesto	108	81	79,4	73,5													1,12
53	SLT	OuHoor	Domesto	109	81,4	79,8	73,2		New <u>W</u>	orkboo	ĸ									1,13
54	SLT	Ouldoor	Domes Id	104	76,2	74,6	71,7													1,176
55	SLT	Ouldoor	Domes to	99	76.4	76,2	757	5.8	36.9	56	39	17	22	ص س	14	55.2	70.2	23.1	5.7	1.034
57	SLT	OuHoor	Domes lo	115	83,2	81,4	70,7	6	35,7	5,9	3,5	14	13	35	10	55,3	71,2	23,8	2,97	1,2
58	SLT	OuHoor	Domesto	105	77,2	75,6	71,3	6	36,7	6	3,6	19	12	35	10	51,3	72	23	4,04	1,07
59	SLT	Ouldoor	Domes lo	116	87,6	85,8	73,9	5,6	37,1	6,1	3,3	20	14	+1	16	58,7	71	21,3	4,55	1,04
60	SLF	Ouldoor	Domes to	107	77,4	75,8	70,8	5,5	36,7	6,1	3,5	16	18	30	15	57,7	71	22.5	7 p1 6 36	1.14
62	LP	OuHoor	Domesta	113	84.7	83.1	73.5	6,1	36,9	5,9	4.5	27	21	16	40	58.4	70.04	23.7	4.18	1.17
63	LP	OuHoor	Domesto	105	75,8	74,4	70,1	6,2	37,1	5,9	4,8	22	22	16	40	60,2	71,39	21	6,31	1,21
64	LP	OuHoor	Domesto	116	87,4	86	74,1	5,9	37,4	5,9	4,4	13	15	13	35	55,7	67,1	23,8	7,2	1,07
65	LP	Ouldoor	Domes Io	107	75,4	73,6	68,7	5,9	38,2	5,9	5,1	15	16	16	35	59,3	71,22	23,1	3,66	1,26
67	LP	Ouldoor	Domesto	115	82,9	81,2	74.3	5,7	.ss,9 39.2	5,9	4,5	22	14	10	30	53,9	68,99	22,7	4,82	1,15
68	LP	OuHoor	Domesto	118	87,9	86,2	73	6,6	38	5,8	4,4	25	18	16	35	56,8	65,46	22,2	11,14	1,04
69	LP	OuHoor	Domesto	115	85,7	83,4	72,5	5,8	37,8	5,9	4,3	17	15	12	35	58,4	70	22,7	5,34	1,18
70	LP	Ouldoor	Domesto	110	86,9	84,2	76,5	6,1	38,9	5,8	4,4	10	14	12	40	53,5	68,98	23	4,9	1,09
71	LP	Ouldoor	Domes lo Innesi	108	79,2	77,4	71,6	6,3	39,2	5,8	4,5	32	24	25	45	59,3	68,49	20	2,55	1,081
73	LP	Ouldoor	Import	119	90.6	88.6	74.4	5,7	+0,5	5,9	+,+	12	24	21	<u>د</u> س	64,9	70.22	23.5	2.9	1.2
74	LP	OuHoor	Import	116	85,4	82,8	71,3	5,8	39,5	5,8	5,3	21	16	15	36	57,1	66,07	22,2	6,22	1,14
75	LP	OuHoor	Import	107	79,1	76,8	71,7	6,1	40,8	5,7	5,1	12	15	8	32	64,2	70,53	23,5	3,65	1,29
76	LP	OuHoor	Import	110	81	79,4	72,1	6,2	39,7	5,7	4,8	10	13	9	30	56,2	70,12	22,2	3,85	1,25
77	LP	Ouldoor	Import	111	82,9	80,4	72,4	6,4	39,9	5,8	4,7	10	13	9	45	63,3	68,07	21,7	6,12	1,14
79	LP	OuHoor	Import	108	78,9	75.8	70,1	5.4	+1,4	5,9	5,1	12	19	18	31	58,2	69,58	21	3,42	1.23
80	LP	OuHoor	Import	118	89,7	87,4	74	5,7	40,4	5,8	4,8		10	11	39	60,3	67,62	22,2	8,09	1,12
81	LP	OuHoor	Import	118	35_1	- 84	714	- 5.±	- 39.1	- 58	49	16	16	13	- 35	- 25	67,07	22.8	_ £73	1,19
82																				

2. Värvige oranžiks kõik tugevad seosed ($|r| \ge 0.7$) ja kollaseks kõik keskmise tugevusega seosed ($|r| \ge 0.3$), va peadiagonaalil paiknevad ühtesid sisaldavad lahtrid.

Kuigi seda ülesannet saab lahendada ka eelnevalt kirjeldatud viisil, määrates igale piirväärtusele oma vormingu (kokku viis tingimust; miks viis?), on tegelikult kiirem ja lihtsam moodus anda vormindamistingimused ette valemina.

Näiteks antud juhul on vaja, et oranžiks värvitaks lahtrid, mis on kas 0,7-st suuremad või -0,7-st väiksemad ja mis ei võrdu ühega (neid peadiagonaalil paiknevaid ühtesid pole mõtet esile tuua, kuna need ei kujuta enesest informatiivseid väärtusi). Kaks esimest tingimust saab kokku võtta kontrollides, kas korrelatsioonikordaja absoluutväärtus on 0,7-st suurem (või võrdne). Kõik tingimused kokku saab ette anda valemiga

=AND(B2<1;ABS(B2)>=0,7)

- Nagu ikka, peab valem Excelis algama võrdusmärgiga (üksnes siis tõlgendab Excel järgnevat käsuna);
- funktsiooni AND argumentidena määratud tingimused peavad vormingu kinnitamiseks olema kõik (antud juhul kaks tk) rahuldatud;
- o funktsioon ABS leiab absoluutväärtuse;
- lahter, millele funktsiooni on rakendatud, peab olema selekteeritud lahtribloki vasak ülemine lahter – Excel alustab tingimuse täidetuse kontrolli just nimelt sealt ja järgnevate lahtrite juurde edasi (vasakule või alla) liikudes muudab vastavalt ka valemis sisalduvat lahtriaadressi (st käitub analoogselt töölehele sisestatud valemite kopeerimisega).

Conditional Formatting Ru	iles Manager			? 🗙
Show formatting rules for: Cur	rent Selection	✓		
Mew Rule	Rule X <u>D</u> elete Ri	ule 🔺 🔻		
Rule (applied in order shown)	Format	Applies to		Stop If True 🔼
Formula: =AND(B2<1;	AaBbCcYyZz	=\$B\$2:\$R\$18		
Formula: =AND(B2<1;	AaBbCcYyZz	=\$B\$2:\$R\$18	E	
				~
		ОК	Close	Apply

Tulemus:

	LWDbs1.4	WCW	CCW	d <i>r</i> ess.%	pH45min	temp45mi	pH24h	temp24h	BackFat1	BackFat2	BackFat3	BackFat4	Meatpot	Moisture	Protein	Fat	Ash
LWDbs1.4	1																
WCW	0,49774	1															
CCW	0,47436	0,99758	1														
dress.%	0,36691	0,43463	0,42297	1													
pH45min	0,0232	-0,2047	-0,2034	0,2562	1												
temp45m	0,16458	-0,2032	-0,232	0,02224	0,22356	1											
pH24h	-0,0972	0,19051	0,2215	-0,2581	-0,3232	-0,4516	1										
temp24h	0,11233	0,60954	0,60769	-0,0282	-0,1737	0,09011	0,15798	1									
BackFat1	0,06828	0,24259	0,25294	-0,0603	-0,0357	-0,1871	0,16207	0,32969	1								
BackFat2	-0,0176	0,27119	0,2783	0,05083	-0,175	-0,3496	0,16825	0,26409	0,5544	1							
BackFat3	0,12636	0,42679	0,43586	0,23051	-0,386	-0,6052	0,42671	0,14223	0,29809	0,50115	1						
BackFat4	-0,1431	-0,1389	-0,144	-0,1896	0,17727	0,49417	-0,3471	0,19688	0,06107	-0,0661	-0,6808	1					
Meatpot	0,11632	0,13705	0,13505	0,0397	0,00412	0,19111	0,00366	0,20179	-0,0206	0,09189	-0,0814	0,19111	1				
Moisture	-0,2646	-0,0019	0,0132	-0,0938	-0,1544	-0,3106	0,26209	-0,0783	-0,0516	0,09977	0,31662	-0,3192	0,00894	1			
Protein	-0,2313	-0,1027	-0,0954	-0,1239	0,1307	-0,118	-0,1136	-0,1256	-0,1632	-0,1053	-0,2348	0,15449	-0,0283	-0,0301	1		
Fat	0,19551	0,03041	0,02521	0,20862	0,04101	-0,0223	-0,0999	-0,1622	-0,0714	-0,1082	-0,0436	-0,0402	0,03845	-0,612	-0,2407	1	
Ash	-0,0904	-0,0636	-0,0573	-0,3519	0,08694	0,20251	-0,0339	0,1338	-0,151	-0,0662	-0,3523	0,32762	-0,0725	0,19843	0,1961	-0,4122	

Tehke korrelatsioonikordajate tabelist (vaid väärtustest) koopia ja proovige seal ka teisi tingimusvormindamise variante – näiteks kasutage sujuvat vormingut, kus korrelatsioonikordaja väärtusele -1 vastab sinist, väärtusele 0 valget ja väärtusele 1 punast värvi lahter:

lew Formattin	g Rule				?
elect a Rule Type	:				
Format all cells	based on their val	ues			
► Format only ce	ells that contain				
Format only to	op or bottom ranked	d values			
Format only vi	alues that are abov	e or below average	2		
Format only un	nique or duplicate v	alues			
► Use a formula	to determine which	cells to format			
Format all cell Format Style:	s based on their 3-Color Scale	Values:	N	Maximum	
Type: Number	~	Number	v	Number	~
Value: -1		0		1	
<u>C</u> olor:	· · · · · · · · · · · · · · · · · · ·	•	~		v
Preview:					
				ОК	Cancel

Tulemus:

	LWDbs14	WCW	CCW	dress %	pH45min	temp45mi	nH24h	temn24h	BackEat1	BackEat2	BackEat3	BackEat4	Meatoct	Moisture	Protein	Eat	Ash
IWDbs14	1			0.000.70	prinomin	tomp rom	priz in	tomp2 m	Daoia arr	Daoia at2	Daoin ato	Daora acr	modipor	monordaro	1 TOTOIN	T GI	71011
wcw	0 49774	1															
CCW	0 47436	0.99758	1														
dress %	0.36691	0 43463	0 42297	1													
pH45min	0.0232	-0.20469	-0.20337	0.2562	1												
temp45mi	0.16458	-0.20319	-0.23201	0.02224	0.22356	1											
pH24h	-0.09716	0.19051	0.2215	-0.25809	-0.32317	-0.45163	1										
temp24h	0.11233	0.60954	0.60769	-0.02816	-0.17374	0.09011	0.15798	1									
BackFat1	0.06828	0.24259	0.25294	-0.06027	-0.03566	-0.18708	0.16207	0.32969	1								
BackFat2	-0,01757	0,27119	0.2783	0,05083	-0,17502	-0,3496	0,16825	0,26409	0,5544	1							
BackFat3	0,12636	0,42679	0,43586	0,23051	-0,38602	-0,60516	0,42671	0,14223	0,29809	0,50115	1						
BackFat4	-0,14313	-0,13893	-0,14399	-0,18962	0,17727	0,49417	-0,34705	0,19688	0,06107	-0,06605	-0,68078	1					
Meatpct	0,11632	0,13705	0,13505	0,0397	0,00412	0,19111	0,00366	0,20179	-0,02062	0,09189	-0,08144	0,19111	1				
Moisture	-0,26463	-0,00191	0,0132	-0,09382	-0,1544	-0,31062	0,26209	-0,07831	-0,05164	0,09977	0,31662	-0,31924	0,00894	1			
Protein	-0,23131	-0,10269	-0,09541	-0,12385	0,1307	-0,118	-0,11356	-0,12563	-0,16324	-0,1053	-0,2348	0,15449	-0,02828	-0,03014	1		
Fat	0,19551	0,03041	0,02521	0,20862	0,04101	-0,02228	-0,09991	-0,16217	-0,07145	-0,10824	-0,04357	-0,04024	0,03845	-0,61196	-0,2407	1	
Ash	-0,0904	-0,0636	-0,05729	-0,35189	0,08694	0,20251	-0,03388	0,1338	-0,15103	-0,06618	-0,35231	0,32762	-0,07248	0,19843	0,1961	-0,41217	1

3. Korrelatsioonikordajate statistilise olulisuse testimiseks Excelis sisseehitatud vahendeid ei ole, siiski on p-väärtused leitavad mõistes nende olemust ja teades arvutusvalemit.

Meeldetuletuseks teooriast – hüpoteeside testimine korrelatsioonikordaja kohta

Testimaks korrelatsioonikordaja erinevust nullist (st testimaks seose statistilist olulisust) MS Excelis, tuleb esmalt arvutada teststatistiku (mis on nullhüpoteesi kehtides t-jaotusega) väärtus valemist

$$t=r\sqrt{n-2}/\sqrt{1-r^2}\underset{H_0}{\sim}t_{n-2},$$

suurus r selles valemis on arvutatud korrelatsioonikordaja väärtus ja n on vaatluspaaride arv (ehk nende andmebaasi ridade arv, mille puhul olid mõlema tunnuse väärtused teada – puuduvate väärtusteta andmestiku puhul on siis tegu andmestiku suurusega).

Seose statistilise olulisuse üle otsustamiseks vajalik olulisuse tõenäosus *p* kujutab enesest leitud teststatistiku väärtuse kohalt ära lõigatud *t*-jaotuse sabade osakaalu (joonisel pindalade S_t summa). $p = S_t + S_t$

Excel 2010-s on p-väärtus leitav funktsiooniga T.DIST.2T(ABS(t);n-2), Exceli varasemates versioonides aga valemiga TDIST(ABS(t);n-2;2).

Soovides arvutada p-väärtuseid kõigile korrelatsioonimaatriksis sisalduvatele korrelatsioonikordajatele on mõistlik viia arvutused läbi analoogses tabelis.

• Selleks tuleb teha korrelatsioonikordajate tabelist (väärtustest) koopia ja kustutada ära tabeli sisu.

	LWDbs1.4	WCW	cow	dress.%	pHKSmin	ano(Sni	pH24h	amp24h	BackFarl	BackFact	BackFac)	BackFast	Meaner	Molecure	Prosin	Fac	dah
LWDbs1/																	
WCW	0,49774																
ccw	0,47490	0.99759															
dress.%	0,96661	0,49469	0,42297														
pH45min	0,0292	-0,20468	-0,20997	0,2562													
anption	0,16458	-0,20918	-0,29201	0,02224													
pH24h	-0,09716	0,18051	0,2215	-0,25809		Kor	rala	teine	mil	orda	into	tabe	1				
amp24h	0,11299	0,00054	0,60766	-0,02916		ROI	ICIA	isiou	лпк	orua	jait	labe	71				
BackFarl	0,06626	0,24258	0,25294	-0,06027							•						
BackFact	-0,01757	0,27118	0,2769	0,05069	-0,17502	-0,9499	0,16625	0,26408	0,5544								
BackFad	0,12696	0,42679	0,43586	0,29051	-0,36602	-0,00510	0,42671	0,14333	0,29909	0,50115							
BackFast	-0,14919	-0,12669	-0,14399	-0,18992	0,17727	0,49417	-0,94705	0,10666	0,00107	-0,06605	0,66076						
Meager	0,11692	0,19705	0,19505	0,0967	0,00412	0,19111	0,00366	0,20178	-0,02062	0,09169	-0,08144	0,10111					
Molesure	-0,29469	-0,00191	0,0192	-0,09962	-0,1544	-0,51062	0,26208	-0,07691	-0,05164	0,09977	0,91662	-0,91894	0,00684				
Prosin	-0,29191	-0,10268	-0,09541	-0,12965	0,1907	-0,118	-0,11956	-0,12569	-0,16924	-0,1053	-0,2948	0,15448	-0,02626	-0,09014			_
Fac	0,19551	0,09041	0,02521	0,20862	0,04101	-0,02228	-0,09991	-0,16217	-0,07145	-0,10624	-0,04367	-0,04024	0,05845	-0,61196	-0,2407		
<u>ásh</u>	-0,0904	-0,0696	-0,05729	-0,55168	0,08684	0,20251	-0,03566	0,1556	0,15109	-0,06618	-0,95391	0,99769	-0,07248	0,19963	0,1991	-0,41217	
1																	
1																	
	LWDbs1/	WCW	CCW	dress.%	pHisinin	angsini	pH24h	ang24h	DeckFart	PackFac	PackFac	PackFas	Manper	Molecure	Presin	Fat	(cah
LWDba1/																	
WCW	_																
CCW																	
cress.w																	
preserin																	
autors and	-					_	_		_	_	_		_				
pease																	
Des la cert						T	and	OV P	× 178	Setur	to to	hal					
Darah Card						1	700a	av L)-va	artus		idei					
Darris Card								-									
Dark Carl																	
Manner																	
Malerica																	
Dessals																	
Prosin Ear																	

• Ja edasi tuleb sisestada p-väärtuste tabeli esimesse lahtrisse valem, mis kasutab argumendina korrelatsioonikordajate tabelis samas kohas paiknevat väärtust (juhul, kui vaatluspaaride arv *n* on erinevate korrelatsioonikordajate puhul erinev, tuleb ka nendest väärtustest teha analoogse struktuuriga tabel).

Vältimaks p-väärtuse arvutamist diagonaalil paiknevate arvu üks sisaldavate lahtrite ja ülalpool peadiagonaali paiknevate tühjade lahtrite tarvis, võib p-väärtuste arvutamise valemi esitada funktsiooni IF argumendina, mida rakendatakse vaid siis, kui vastav korrelatsioonikordaja on ühest väiksem ja ei võrdu nulliga (vastasel juhul jäetakse lahter tühjaks).

					-						<i>n</i>		///-					
- 4	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R
20																		
21		LWDbs1.4	WCW	CCW	dress.%	pH45min	temp45mi	pH24h	temp24h	BackFat1	BackFat2	BackFat3	BackFat4	Meatpot	Moisture	Protein	Fat	Ash
22 LW	VDbs1.4																	
23 W0	CW	0,497737	1															
24 CC	CW	0,474365	0,997576	1														
25 dre	255.%	0,366909	0,434626	0,422971	1													
26 pH	145min	0,023202	-0,20469	-0,20337	0,2562	1												
27 ten	mp45mi	0,164584	-0,20319	-0,23201	0,02224	0,223562												
28 pH	124h	-0,09716	0,190514	0,221501	-0,25809	-0,32317	-0,45163	1										
29 ten	mp24h	0,112325	0,609537	0,607693	-0,02816	-0,17374	0,09011	0,157983	1									
30 Ba	ickFat1	0,068278	0,242589	0,252939	-0,06027	-0,03566	-0,18708	0,162072	0,329688	1								
31 Ba	ickFat2	-0,01757	0,271189	0,278301	0,050826	-0,17502	-0,3496	0,168249	0,26409	0,554396	1							
32 Ba	ickFat3	0,126364	0,426795	0,435861	0,230514	-0,38602	-0,80518	0,426712	0,142231	0,298088	0,501146	1						
33 Ba	ickFat4	-0,14313	-0,13893	-0,14399	-0,18962	0,177273	0,494174	-0,34705	0,196878	0,08107	-0,06605	-0,68078						
34 Me	eatpot	0,116321	0,137052	0,135053	0,0397	0,004117	0,19111	0,003858	0,201787	-0,02082	0,091886	-0,08144	0,191111					
35 Mo	Disture	-0,26463	-0,00191	0,013199	-0,09382	-0,1544	-0,31082	0,262094	-0,07831	-0,05164	0,099789	0,316617	-0,31924	0,008941				
36 Pro	otein	-0,23131	-0,10289	-0,09541	-0,12385	0,130702	-0,118	-0,11356	-0,12563	-0,16324	-0,1053	-0,2348	0,154494	-0,02828	-0,03014	0.0407		
37 Fa	it	0,195513	0,030413	0,025211	0,208616	0,041013	-0,02228	-0,09991	-0,16217	-0,07145	-0,10824	-0,04357	-0,04024	0,038455	-0,61196	-0,2407		
38 As	sh	-0,0904	-0,0636	-0,05729	-0,35189	0,088938	0,202512	-0,03388	0,133798	-0,15103	-0,06618	-0,35231	0,327616	-0,07248	0,198433	0,196104	-0,41217	
39																		
40				0.0141				110.01										
41		LVVDbs1.4	WCW	COW	dress.%	pH45min	temp4omi	pH24n	temp24n	BackFat1	BackHat2	BackHat3	BackHat4	Meatpot	Moisture	Protein	Fat	Ash
42 LVV	VDDS1.4	=IF(AND(BZZ<>0;BZ	2<1);1.DIS	1.21(ABS(B	ZZ-SQRT(80-2)/SQR1	(1-822*82	2));80-2);									
43 000	210/																	
44 CC																		
40 dre	255.76																	
40 pH	mo/Emi																	
47 100	1246																	
49 ten	mn24h																	
50 Ba	okEat1																	
51 Ba	okFat2																	
52 Ba	ckFat3																	
53 Ba	ckFat4																	
54 Me	atoct																	
55 Mo	oisture																	
56 Pro	otein																	
57 Fat	t																	
58 As	h																	

Kopeeriga sama valemit kõigisse p-väärtuste tabeli lahtritesse ning vormindage tabel kopeerides t-testi tulemustele rakendatud vormingud.

Tulemus:

р	LWDbs1.4	WCW	CCW	dress.%	pH45min	temp45mi	pH24h	temp24h	BackFat1	BackFat2	BackFat3	BackFat4	Meatpot	Moisture	Protein	Fat	Ash
LWDbs1.4																	
WCW	0,000																
CCW	0,000	0,000															
dress.%	0,001	0,000	0,000														
pH45min	0,838	0,069	0,070	0,022													
temp45mi	0,145	0,071	0,038	0,845	0,046												
pH24h	0,391	0,091	0,048	0,021	0,003	0,000											
temp24h	0,321	0,000	0,000	0,804	0,123	0,427	0,162										
BackFat1	0,547	0,030	0,024	0,595	0,754	0,097	0,151	0,003									
BackFat2	0,877	0,015	0,012	0,654	0,120	0,001	0,136	0,018	0,000								
BackFat3	0,264	0,000	0,000	0,040	0,000	0,000	0,000	0,208	0,007	0,000							
BackFat4	0,205	0,219	0,203	0,092	0,116	0,000	0,002	0,080	0,590	0,560	0,000						
Meatpot	0,304	0,225	0,232	0,727	0,971	0,089	0,974	0,073	0,856	0,418	0,473	0,089					
Moisture	0,018	0,987	0,907	0,408	0,171	0,005	0,019	0,490	0,649	0,379	0,004	0,004	0,937				
Protein	0,039	0,365	0,400	0,274	0,248	0,297	0,316	0,267	0,148	0,353	0,036	0,171	0,803	0,791			
Fat	0,082	0,789	0,824	0,063	0,718	0,844	0,378	0,151	0,529	0,339	0,701	0,723	0,735	0,000	0,031		
Ash	0,425	0,575	0,614	0,001	0,443	0,072	0,765	0,237	0,181	0,560	0,001	0,003	0,523	0,078	0,081	0,000	

• Aga, kasutades välja arvutatatud p-väärtuseid võib vormindada ka hoopis korrelatsioonikordajate tabeli.

Selleks tehke veelkord koopia korrelatsioonikordajate tabelist (väärtustest), võtke kopeeritud tabeli sisu blokki ja rakendage Exceli tingimusvormindamist, määrates lahtri vormingu vastavalt p-väärtuste tabelis samal kohal paiknevale arvule.

- 4	A	В	С	D	E	F	G	н	1.1	J	K	L	M	N	0	P	Q	R
40					- (_												
41	P	II WDbs1 4	WCW	CCW	dress	New Fo	rmattir	ng Rule	<u>,</u>					2	X	Protein	Fat	Ash
42	LWD061.4	2000						.5	·									
44	CCW	0.000	0.000															
45	dress %	0.001	0.000	0.000		Select a F	Rule Typ	e:										
46	pH45mIn	0.838	0.069	0.070														
47	temp45ml	0,145	0,071	0,038		📘 🏲 Form	at all ce	ls based	on thei	r values								
48	pH24h	0,391	0,091	0,048		b Form	- t lu	ومطاور والمر										
49	ter			0,000		► Form	at only (elis tria	contair	1								
50	🖪 La	ahtri a	adress	0,024		Eorn	at only t	on or br	ottom ra	nked val	ues							
51	Ba			0,012			ore only i	op or be	/	nineer ver	ues							
52		o-vaar	tuste	2,000		Form	at only v	/alues th	nat are a	above or	below a	average						
53	Da	tabel	ict	0,203								-						
55	M	tabel	151	0,232		📘 🏲 Form	iat only i	unique o	r duplica	ite value	s							
56	Protein	0.039	0.365	0,307	\mathbf{X}	► Lise	a formuli	a to date	armina u	bich coll	e to form	nat			0.79	1		
57	Fat	0.082	0.789	0.824		Use Use		a to uete		nich cei	S to TOH	nat				0.031		
58	Ash	0,425	0,575	0,614											0,07	8 0,081	0,000	
59							ula nas											
60							(ule Des	ription:										
61	r	LWDbs1.4	WCW	CCW	dress										ure	Protein	Fat	Ash
62	LWDb61.4	1				F <u>o</u> rma	t value	s wher	e this f	ormula	is true	:						
63	WCW	0,497737	1				4							-				
64	dross %	0,474365	0,997576	0.422071		=AND(B42<0,0	01;B42)	>0)					1				
65	nH45min	0,000909	-0.204694	-0.20337	0													
67	temp45ml	0.164584	-0.203189	-0.232015	00													
68	pH24h	-0.09716	0,190514	0.221501	-0.25													
69	temp24h	0,112325	0,609537	0,607693	-0,00													
70	BackFat1	0,068278	0,242589	0,252939	-0,06										1			
71	BackFat2	-0,017568	0,271189	0,278301	0,05	Previe	w:		AaBb	CCYYZ:	Z		Eorm	nat				
72	BackFat3	0,126364	0,426795	0,435861	0,23								-					
73	BackFat4	-0,143128	-0,138934	-0,143992	-0,18													
74	Meatpot	0,116321	0,137052	0,135053	0							_	0					
75	Drotolo	-0,264629	-0,001914	0,013199	-0,09						0	×	C	ancel		1		
70	Fat	-0,231309	-0,102688	0.025211	-0,12										105	0 -0.2403		
78	Ach	-0.090308	-0.063605	-0.057288	-0.35	1894 0.08593	0,0000000	-0.03388	0.133706	-0.151035	-0.056175	-0.352306	0.327616	-0.07248	3 0 108/3	3 0 19610/	-0.412173	
10	meil	-0,000000			- 100	1004 0,00050	0,202012		0,100190	-0.131033	-0,000113		0,027010	-9,91290	0,12010	0,19010	2012112	

Analoogselt tuleb defineerida korrelatsioonikordajate vormingud ka p<0,01 ja p<0,05 tarvis.

Tulemus:

r	LWDbs1.4	WCW	CCW	dress.%	pH45min	temp45mi	pH24h	temp24h	BackFat1	BackFat2	BackFat3	BackFat4	Meatpot	Moisture	Protein	Fat	Ash
LWDbs1.4	1																
WCW	0,497737	1															
CCW	0,474365	0,997576	1											p < 0,001			
dress.%	0,366909	0,434626	0,422971	1										p < 0,01			
pH45min	0,023202	-0,20469	-0,20337	0,2562	1									p < 0,05	1 N.		
temp45mi	0,164584	-0,20319	-0,23201	0,02224	0,223562	1									N. 1		
pH24h	-0,09716	0,190514	0,221501	-0,25809	-0,32317	-0,45163	1										
temp24h	0,112325	0,609537	0,607693	-0,02816	-0,17374	0,09011	0,157983	1							No	d lahtri	don
BackFat1	0,068278	0,242589	0,252939	-0,06027	-0,03566	-0,18708	0,162072	0,329688	1						INCO	zu lanni	u on
BackFat2	-0,01757	0,271189	0,278301	0,050826	-0,17502	-0,3496	0,168249	0,26409	0,554398	1					vormi	ndatud	lihtsalt
BackFat3	0,126364	0,428795	0,435861	0,230514	-0,38602	-0,60516	0,428712	0,142231	0,298088	0,501146	1				nunu	0	ahil
BackFat4	-0,14313	-0,13893	-0,14399	-0,18962	0,177273	0,494174	-0,34705	0,196878	0,06107	-0,06605	-0,68078	1			nupt	i 🔊 -	<i>uon</i> .
Meatpot	0,116321	0,137052	0,135053	0,0397	0,004117	0,19111	0,003658	0,201787	-0,02062	0,091886	-0,08144	0,191111	1				
Moisture	-0,26463	-0,00191	0,013199	-0,09382	-0,1544	-0,31062	0,262094	-0,07831	-0,05164	0,099769	0,316617	-0,31924	0,008941	1			
Protein	-0,23131	-0,10269	-0,09541	-0,12385	0,130702	-0,118	-0,11356	-0,12563	-0,16324	-0,1053	-0,2348	0,154494	-0,02828	-0,03014	1		
Fat	0,195513	0,030413	0,025211	0,208616	0,041013	-0,02228	-0,09991	-0,16217	-0,07145	-0,10824	-0,04357	-0,04024	0,038455	-0,61198	-0,2407	1	
Ash	-0,0904	-0,0636	-0,05729	-0,35189	0,086938	0,202512	-0,03388	0,133796	-0,15103	-0,06618	-0,35231	0,327616	-0,07248	0,198433	0,196104	-0,41217	1

- Mõõtm., andmetöötlus ja autom. piimanduses ja lihanduses, VL-1112 ja VL-1122
- 4. Lisaülesanne (ei ole kohustuslik) neile, kellel huvi on ja soov demonstreerida, et oskate :)

Uurige, kas tunnuste 'Temp 45min' ja 'Temp 24h' vaheline seos sõltub sigade pidamiskeskkonnast – leidke nimetatud tunnuste vahelised lineaarsed korrelatsioonikordajad eraldi nii tavapärases kui ka külmlaudas peetud sigadel ning illustreerige seost hajuvusdiagrammiga, kus erinevatele pidamistingimustele vastavad väärtused on tähistatud erinevalt (lisaks võite seoste erinevuse selgemaks esile toomiseks lisada punktiparvele regressioonisirged).

Eesmärk:

--- Ülesanne 3 ---

1. Avage *Excel*'is isiklik andmetabel, mis sisaldab kõndimisel registreeritud vasaku ja parema jala poolt avaldatud jõudu. Salvestage avatud fail koheselt Exceli formaadis.

	<	
$File \rightarrow Open / Ava \rightarrow$	File <u>n</u> ame:	×
	Files of type:	All Microsoft Office Excel Files (*.xl*; *.xls; *.xlt; *.htm; *
		All Microsoft Office Excel Files (*.xl*; *.xls; *.xlt; *.htm; * Microsoft Office Excel Files (*.xl*; *.xls; *.xls; *.xlt; *.xln All Web Pages (*.htm; *.html; *.mht; *.mhtml) XML Files (*.xml) Text Files (*.prn; *.txt; *.csv) All Data Sources (*.odc; *.udl; *.dsn; *.mdb; *.mde; *.db
Text Import Wizard - Step 1 of 3		? 🔀
The Text Wizard has determined that your data is Del If this is correct, choose Next, or choose the data type Original data type Choose the file type that best describes your data: Delimited Characters such as commas of Fixed width 	imited. be that best describe or tabs separate eac with spaces betweer	s your data. h field. n each field.
Text Imp	ort Wizard - Ste	p 2 of 3 ?
how your → Delimiter ✓ Iat → Spa	s	e preview below. Treat consecutive delimiters as one Comma Text gualifier:
Text Import Wizard - Step 3 of 3		
This screen lets you select each column and set the Data Format.	Column data form	nat
'General' converts numeric values to numbers, date values to dates, and all remaining	<u> </u>	
Advanced Tex	t Import Setting	s 🛛 🔀
Advanced Data preview Ceneral Vernier Format 2 Vmino T T F1 Settings used to Decimal separat Ihousands separat Ihousands separat Ihousands separat Note: Numbers specified in the Reset Ceneral T T Ceneral	recognize numeric da cor: arator: will be di sprayou asir Regional Settings co Trailin	rg the numeric settings ntrol panel. g minus for negative numbers OK Cancel
Cancel		

Antud andmete näol on tegu statsionaarse aegreaga, st et mõõtmised on sooritatud ajas võrdsete ajavahemike tagant – antud andmestikus 0,1-sekundiliste intervallidega.

2. Lihtsaim viis ajas (või ka ruumis) korduvalt mõõdetud väärtustest esmase ülevaate saamiseks ja sageli ka muutumise struktuuri tuvastamiseks on illustreerida andmeid joonisega, kus *x*-teljel on mõõtmishetked (kohad) ja *y*-teljel mõõdetud väärtused.

Tehke taoline joonis oma andmete põhjal, pannes ühele joonisele nii parema kui ka vasaku jala poolt avaldatud jõud.

- 3. Pange mõlema jala tarvis kirja maksimaalsed väärtused.
- 4. Konstrueerige mõlema jala tarvis sagedustabelid, arvutage sealt suhtelised sagedused, esitage need %-des ja illustreerige histogrammidega.

Eesrindlikumad võivad püüda eraldi juhendi alusel konstrueerida matemaatiliselt korrektse histogrammi (parasjagu trikitamist nõuab x-telje ühikute nö pidaval skaalal ja õiges kohas esitamine). Ingliskeelne üldine juhend: <u>http://www.treeplan.com/BetterHistogram 20041117 1555.htm</u>

Arvtunnusele Excelis sagedustabeli ja histogrammi tegemise kohta vt vajadusel esimese praktikumi juhendit.

Tulemuseks võiks tulla näiteks midagi järgnevat:

Oskate oma jooniste põhjal ka midagi järeldada? Mina siin toodute alusel järeldan näiteks, et vasaku jala poolt avaldatav surve on tugevam ja astumine sujuvam, paremale jalale toetudes on surve nõrgem ja enam on ka hetki, millal just parem jalg on õhus. Analoogseid järeldusi võinuks teha muidugi ka juba algandmete alusel sammumustrit illustreerivat joonist (punkt 2) täpsemalt uurides.

Matemaatiliselt korrektsed (aga Excelis suure trikitamise tulemusena saavutatavad) histogrammid oleks järgmised:

5. Järjestikuste mõõtmistulemuste vahelist seost mõõdab **autokorrelatsioonikordaja**. Autokorrelatsioonikordajat võib arvutada nii üksteisele ajaliselt järgnevate väärtuste kui ka pikema ajalise vahega mõõdetud väärtuste vahel – viimasel juhul räägitakse *k*. järku autokorrelatsioonikordajast, st et mõõtmised, millede vahelist seost antud kordaja kirjeldab, on teostatud *k*-ajahetke järel (järjestikuste mõõtmiste vaheline korrelatsioonikordaja on seega esimest järku autokorrelatsioonikordaja).

Autokorrelatsiooni muutumist sõltuvalt väärtuste vaheliste ajahetkede arvust (st sõltuvalt kordaja järgust) kujutavad diagrammi nimetatakse **korrelogrammiks**. Autokorrelatsioonikordaja muutumise kiirus näitab, kuivõrd tugevalt ja kui pika ajavahemiku tagant on mõõtmised omavahel seotud. Korrelogrammi laineline struktuur viitab tsüklilistele muutustele analüüsitavas andmestikus (seejuures võimaldab korrelogramm sageli tuvastada tsüklilisi muutusi ka mürarohkeist andmeist, kus algandmete alusel konstrueeritud jooniselt ei pruugi perioodilisust silma hakata).

• Arvutage 0. kuni *k.*-järku autokorrelatsioonikordajad kummagi jala tarvis ja illustreerige saadud kordajaid diagrammiga (ühele graafikule võite panna mõlema jala kohta arvutatud autokorrelatsioonikordajad).

Praktikumi ettevalmistamisel kasutatud andmestikus osutus mõistlikuks kasutada andmeid alates teisest sekundist (st, et välja jäeti esimese sekundi jooksul mõõdetud väärtused, kuna mõõtmisväärtusi illustreeriva joonise alusel võiks ligikaudu 10 esimest mõõtmist lugeda mõõdetud protsessi mittepiisavalt kirjeldavateks – eriti parema jala puhul). Ja autokorrelatsioonikordajad võib leida rahumeeli vähemalt 250. järguni, sest kuigi jättes kõrvale 10 esimest mõõtmist jääb enam kui 30 sekundilise sammumise korral ka 250.-järku autokorrelatsioonikordaja arvutamiseks üle 40 mõõtmise.

Et autokorrelatsioonikordaja kujutab enesest mingis veerus paiknevate väärtuste korrelatsioone (teatud nihkes) iseendaga, saab neid Excelis arvutada ka ühte veergu, fikseerides ära nö baasväärtused ja lastes valemit allapoole kopeerides muutuda teisel argumendil ...

Kui tundub, et kaks samal graafikul kujutatud autokorrelatsioonifunktsiooni mingil määral erinevad, võib olla mõistlik teha joonis vaid esimeste autokorrelatsioonikordajate baasil:

Antud juhul mingit erinevust vasaku ja parema jala poolt rakendatud jõudude autokorrelatsioonides silma ei hakka. Aga teil?

6. Konstrueerige hajuvusdiagramm illustreerimaks vasaku ja parema jala poolt ajahetkel rakendatud jõudude vahelist seost. Püüdke punktiparvest läbi sobitada nii sirget kui ka parabooli, mõlemal juhul laske *Excel*'il välja kirjutada ka R² väärtus. Kui vasak ja parem jalg liiguvad ühte moodi, peaks kõik punktid paiknema sirgel, punktiparve pisut kõverakujuline (paraboolne) paiknemine vihjab jalgade mitte päris ühesugusele liikumisele.

Päris ühtlaselt vasak ja parem jalg ei liigu, pisut-pisut kõver joon viitab sellele, et ühe jala poolt avaldatav surve on natukene nõrgem, kui teise jala poolt avaldatav surve. Kuidas asjalood täpselt on, võimaldab selgitada algandmetel baseeruv joonis või siis histogrammide võrdlus.

7. Mida te oskate veel öelda oma sammumustri kohta? Rõhuvad parem ja vasak jalg maapinda ühesuguse tugevusega? On samm ühtlane? Mõlema jala puhul? Milline on sammusagedus?

Näiteks uuritud andmete puhul võin lisaks eelnevalt lühidalt kirjeldatud erinevustele ja sarnasustele leida, et sammu sagedus oli 3,5 sekundit.