Biometry practical 7

Illustrated (imperfect) practical guide

Preparatory work

1. Open in MS Excel the questionary data (file analysed already in previous practicals),
2. insert new worksheet, rename it to 'Praks7' (or 'Practical 7') and
3. make a copy of the data table (from worksheet 'Andmed'/'Data') and paste it into the upper left corner of the new worksheet 'Praks7'.

Exercise.

Does the ownership of a car depend on gender (is the proportion of students with car different among male and female students)?

1. Create a two-way frequency table of variables 'GENDER' and 'CAR '.
2. Add into the table also relative frequencies (both, column and row percentages).
3. Comment the table using both row and column percentages.
4. To test the statistical significance of relationship between car ownership and gender, write down the hypothesis pair.
5. Create a new two-way frequency table of variables 'GENDER' and 'CAR', containing only absolute frequencies;
6. calculate theoretical (expected under null hypothesis) frequencies and
7. perform chi-square test (calculate a p-value).
8. Make a final conclusion (Is the relationship statistically significant? Why do you think so? What is the nature of the relationship?).

Guide

1. Create a two-way frequency table of variables 'GENDER' and 'CAR'.

- Put the cursor into arbitrary cell in data table (in worksheet 'Practical 7').
- Insert-tab \rightarrow PivotTable

Place the PivotTable into the same 'Practical 7' worksheet:

- Omit the student,
who does not know has she/he a car or not, from the future analyses.
Result:

| Count of GENDER Column $L_{i} \bar{T}$ | | | |
| :--- | ---: | ---: | ---: | ---: |
| Row Labels | no | yes | Grand Total |
| M | 2 | 8 | 10 |
| W | 20 | 23 | 43 |
| Grand Total | $\mathbf{2 2}$ | $\mathbf{3 1}$ | $\mathbf{5 3}$ |

2. Add into the table also relative frequencies (both, column and row percentages).

Result:

- For more clear presentation put different calculated values into different rows (not into different columns as Excel makes by default):

Result:

Column				
Row Labels	$\boldsymbol{n o}$	yes	Grand Total	
\mathbf{M}				
Count of GENDER	2	8	10	
Count of GENDER2	2	8	10	
\mathbf{W}				
Count of GENDER	20	23	43	
Count of GENDER2	20	23	43	
Total Count of GENDER	$\mathbf{2 2}$	$\mathbf{3 1}$	$\mathbf{5 3}$	
Total Count of GENDER2	$\mathbf{2 2}$	$\mathbf{3 1}$	$\mathbf{5 3}$	

- To present the second count of students as column percentage:

Column Labi ${ }^{\text {T }}$				
Row Labels			yes	Grand Total
M				
Count of GENDER		2	8	10
Count of GENDER2		9.09\%	25.81\%	18.87\%
w				
Count of GENDER		20	23	43
Count of GENDER2		90.91\%	74.19\%	81.13\%
Total Count of GENDER		22	31	53
Total Count of GENDER2		100.00\%	100.00\%	100.00\%

- Calculate analogically the row percentages ... (\% of Row Total).
(start as described in previous page under point 2)

Column Laber				
Row Labels	- no			Grand Total
M				
Count of GENDER Count of GENDER2		2	8	10
		9.09\%	25.81\%	18.87\%
\rightarrow Count of GENDER3		20.00\%	80.00\%	100.00\%
w				
Count of GENDER		20	23	43
Count of GENDER2		90.91\%	74.19\%	81.13\%
Count of GENDER3		46.51\%	53.49\%	100.00\%
Total Count of GENDER		22	31	53
Total Count of GENDER2		100.00\%	100.00\%	100.00\%
Total Count of Gender		41.51\%	58.49\%	100.00\%

3. Comment the table

(write down conclusions using at least one row and one column frequency)!
4. Write down the hypothesis pair (to be clear, what do you want to test).
5. Create a new two-way frequency table for variables 'GENDER' and 'CAR', containing only absolute frequencies.

6. Create a new frequency table analogous to the previous table but containing instead of observed frequencies theoretical frequencies.

How? Follow the next guide!

- Make a copy of the structure and values of PivotTable result:

- delete the content of copied table (except row and column totals)

- calculate theoretical
(expected under null hypothesis) frequencies following the formula $n_{i j}=n_{i .} \times n_{. j} / n$.

7. Perform chi-square test (calculate p-value) - function CHISQ.TEST.

For better understanding, what the chi-square test is comparing and which data ranges to specify for function CHISQ.TEST, you can colour the compared frequencies and write over the tables, which frequencies they contain.

8. Final conclusion.
(Is the relationship statistically significant? Why do you think so? What is the nature of the relationship?).

If among male students 80.0% have a car, then among female students only 53.5% have a car. From all students with car 25.8% are men and 74.2% women (NB! this reflects that there are just a lot of more women than men and not this, that women have more cars). However, according to chi-square test the relationship between car ownership and gender is not statistically significant ($p=0.125>0.05$). This means, that considering this dataset as a sample from all first year students of Estonian University of Life Sciences, it can't be concluded that the proportion of car owners is different between male and female first year students (the probability that this general conclusion is wrong is 12.5%).

