Biometry practical 3

Illustrated (imperfect) practical guide

Preparatory work

1. Open in MS Excel the questionary data (file analysed already in previous practical),
2. insert new worksheet,
3. rename new worksheet to 'Praks3'

	Andmed Praks1	Praks2 \% ${ }^{\text {c }}$
Ready		Insert Worksheet (Shift+F11)

4. make a copy of the data table (from worksheet 'Andmed') and paste it into the upper left corner of the worksheet 'Praks3'.

Exercise 1.

- Leave at least one empty row below data table and calculate for all numerical variables number of observations (n), average (\bar{x}), median, standard deviation (s), standard error (se), minimum and maximum using Excel functions.
- Add into data table new variable BMI (body mass index) and calculate it's values for all students applying the formula

$$
\text { BMI }=\text { Weight, } \mathrm{kg} /(\text { Height, } \mathrm{m})^{2} .
$$

Calculate all mentioned characteristics also for new variable.

Guide

1. Leave at least one empty row below data table
(it is necessary to separate summary statistics from initial data to avoid considering these calculated values as a part of database - for example in case of sorting the data or applying the PivotTable)
and write into the first column the names of calculable characteristics (then it is later more easier to understand, what is done).
2. Use Excel functions to calculate desired characteristics for students'

4	A	B	C
1	GENDER	HEIGHT	WEIGHT
54	W	162	70
55	W	172	58
56			
57	Number of observations		
58	Average		
59	Median		
60	Standard deviation		
61	Standard error		
62	Min		
63	Max		

a. For this you can select appropriate function from the list of Excel functions (the names of functions are listed at the beginning of next page):

b. Knowing the function name, you can just type the desired formula into the corresponding cell.
(NB! Don't forget to start the formula with sign $=$)

All these functions can be applied also in previously described way - select yourself, which is more simple for you (try both variants).

Number of observations	$=$ COUNT(B2:B55)
Average	$=$ AVERAGE(B2:B55)
Median	$=$ MEDIAN(B2:B55)
Standard deviation	$=$ STDEV.S(B2:B55)
Standard error	
Min	$=\operatorname{MIN}(B 2: B 55)$
Max	$=\operatorname{MAX}(B 2: B 55)$

c. As in Excel there is no function for standard error, the calculations must be performed following the standard error formula

$$
s e=s / \sqrt{n}
$$

(this means, that you must input the formula just typing necessary commands):
3. Apply the same functions to calculate the desired characteristics for all numerical variables.

4. Round the average, standard deviation and standard error values to one decimal place.

Result:

1	GENDER	HEIGHT	WEIGHT	HEAD	SHOE_SIZE MATH	
56						
57	Number of observations	54	54	54	54	54
58	Average	170.2	65.4	55.2	39.6	4.0
59	Median	170	63	56	39	4
60	Standard deviation	7.4	10.7	6.6	2.0	0.8
61	Standard error	1.0	1.5	0.9	0.3	0.1
62	Min	158	47.5	17	36	2
63	Max	190	90	75	46	5

5. Write some sentences about the location and variability on studied variables.
6. Add into data table new column (after column WEIGHT), name the new variable as 'BMI' (body mass index) and calculate it's values for all students applying the formula

$$
\text { BMI }=\text { Weight, } \mathrm{kg} /(\text { Height, } \mathrm{m})^{2} .
$$

NB! Follow the number and position of bracket!

Do you understand this Excel formula?
Remarks.

- Usually you can get the power sign ^ by key combination 'AltGr' $+{ }^{\prime}$ Ä'.
- Alternative to find the square is just to multiply the value with itself: (B2/100)*(B2/100);
- another alternative is to use the power function: POWER(B2/100;2) - here the first argument is the base of a power and the second argument is exponent.

7. Calculate all descriptive characteristics also for new variable.

	A	B	C	D
1	GENDER	HEIGHT	WEIGHT	BMI H
2	W	170	70	24.221
3	W	158	47.5	
4	W	170	60	
5	W	170	50	
6	W	179	68	
7	W	163	56	
8	W	177	65	
9	W	162.5	53	
10	W	170	75	
11	M	175	74	
12	W	176	66	
13	M	175	64	
14	M	190	82	
15	W	161	50	
16	W	170	85	
17	W	176	58	
18	W	172	90	
19	W	158	55	
20	M	189	82	
21	W	169	60	
22	W	164	52	
23	W	172	62	
24	W	173	66	
25	W	169	60	
26	W	162	50	
27	W	165	52	
28	M	170	80	
29	M	176	74	
30	M	175	73	
31	W	171	63	
32	W	170	60	
33	W	163	62	
34	M	181	74	
35	W	168	60	
36	W	174	54	
37	W	166	68	
38	W	168	63	
39	W	165	58	
40	W	171	75	
41	W	165	77	
42	W	161	55	
43	M	183	75	
44	W	169	53	
45	W	175	60	
46	W	167	80	
47	W	158	70	
48	M	174	87	
49	W	165	61	
50	W	164	58	
51	W	185	80	
52	W	177	63	
53	W	160	70	
54	W	162	70	
55	W	172	58	1

Exercise 2.

- Apply the procedure Descriptive Statistics (Data-tab \rightarrow Data Analysis...) to calculate descriptive statistics for numerical variables HEIGHT, WEIGHT, BMI, HEAD and SHOE_SIZE.
- Calculate also $90 \%, 95 \%$ or 99% confidence interval of the mean. What you can conclude based on confidence interval?

Guide

1. To calculate descriptive statistics: Data-tab \rightarrow Data Analysis..\rightarrow Descriptive Statistics

Explanation of additional options of procedure Descriptive Statistics:

- option 'Summary statistics' asks Excel to calculate values of 12 basic characteristics;
- option 'Confidence Level for Mean: 95\%' asks Excel to calculate one half of the confidence interval of mean (this value must be added to and subtracted from the average value to get the confidence limits); instead of default confidence level 95% some other value can be typed (for example 90 or 99);
- options 'Kth Largest $=1$ ' and 'Kth Smallest $=1$ ' ask Excel to output the maximum and minimum value; as these values include already in the summary statistics table calculated according to the first option 'Summary statistics', it is more meaningful to output the second largest and the second smallest values by specifying 'Kth Largest $=2$ ' and 'Kth Smallest $=2$ '.
- Result:

	HEIGHT		WEIGHT		BMI		HEAD		SHOE_SIZE	
	Mean	170.194	Mean	65.4352	Mean	22.5569	Mean	55.2037	Mean	39.6481
	Standard Error	1.00665	Standard Error	1.45092	Standard Error	0.43855	Standard Error	0.90204	Standard Error	0.27365
	Median	170	Median	63	Median	21.5548	Median	56	Median	39
	Mode	170	Mode	60	Mode	20.7612	Mode	55	Mode	39
	Standard Deviation	7.39736	Standard Devia	10.6621	Standard Devi	3.2227	Standard Devic	6.62864	Standard Devi;	2.01089
	Sample Variance	54.7209	Sample Varian	113.68	Sample Variar	10.3858	Sample Varian	43.9389	Sample Variar	4.04368
	Kurtosis	0.34724	Kurtosis	-0.67517	Kurtosis	-0.16936	Kurtosis	22.4574	Kurtosis	0.76174
03300	Skewness	0.58075	Skewness	0.39892	Skewness	0.78119	Skewness	-3.43933	Skewness	0.77969
	Range	32	Range	42.5	Range	13.1208	Range	58	Range	10
	Minimum	158	Minimum	47.5	Minimum	17.301	Minimum	17	Minimum	36
	Maximum	190	Maximum	90	Maximum	30.4218	Maximum	75	Maximum	46
	Sum	9190.5	Sum	3533.5	Sum	1218.07	Sum	2981	Sum	2141
	Count	54								
	Largest(2)	189	Largest(2)	87	Largest(2)	29.4118	Largest(2)	62	Largest(2)	44
	Smallest(2)	158	Smallest(2)	50	Smallest(2)	17.8359	Smallest(2)	40	Smallest(2)	37
	Confidence Level(95.0\%)	2.01909	Confidence Lev	2.91018	Confidence Le	0.87963	Confidence Lev	1.80927	Confidence Ler	0.54887

- Additional reading - description of the shape of the distribution

Most of the characteristics calculated by procedure Descriptive Statistics are introduced already earlier (and in the lecture).
However, there are still two previously not described characteristics, which can be used to describe the shape of the distribution - kurtosis and skewness. The nature of these characteristics is illustrated with the next figure.

It is worth to talk about the remarkable difference from the normal distribution only if whichever of these characteristics has value over 1 or under -1 .

However, these characteristics are not used too often.

skewness ≈ 0

kurtosis > 0

skewness >0 (right skewed)

kurtosis < 0

skewness < 0 (left skewed)

At the present moment the kurtosis of head girth (1.94) is slightly higher than values of the same characteristic for other studied body measurements - this is implying that most of the head circumference values are located in quite narrow range but at the same time there exist few much smaller and/or much bigger values.

- To decide about the symmetry of distribution, often the comparison of mean and median values is used (instead of calculation of skewness).
Namely, as the mean (average) is sensitive to the unusual values (outliers), then
$\bar{x}>$ med refer to the positively (right) skewed distribution (there exist few much bigger values, and so the skewness value >0),
$\bar{x}<m e d$ refer to the negatively (left) skewed distribution (there exist few much smaller values, and so the skewness value <0).
- Look at the calculated values of mean, median and skewness - does these described relations apply also for students body measurements?

2. Calculate $90 \%, 95 \%$ or 99% confidence limits for mean. What is the meaning of these values?

As Excel does not calculate the confidence limits, it must be done by user based for example on the output of procedure Descriptive Statistics. Just add to the output table of procedure Descriptive Statistics two rows -

4	R	5	one for the lower 95% confidence limit and second for the upper $\mathbf{9 5 \%}$ confidence limit.	
1	HEIGHT			
2				
3	Mean	170.19	The confidence limits of the mean	
4	Standard Error	1.0067	are calculated by the formula	
5	Median	170		
6	Mode	170	${ }_{1-\alpha / 2, n}$	
7	Standard Deviation	7.3974		
8	Sample Variance	54.721		
9	Kurtosis	0.3472	As Excel outputs both	arts of
10	Skewness	0.5808	this equation, it is sim	ple to
11	Range	32	calculate desired conf	dence
12	Minimum	158	limits.	
13	Maximum	190		
14	Sum	9190.5		
15	Count	54		
16	Largest(2)	189	Lower 95\% confidence limit	168.18
17	Smallest(2)	158	Upper 95\% confidence limit	
18	Confidence Level(95.0\%)	2.0191		172.21
19				
20	Alumine 95\% usalduspiir	=S3-S18		
21	Ülemine 95\% usalduspiir	=S3+S18		

So, considering the analysed dataset as a sample from the first year students' population, it can be concluded that the average height of students is with 95% probability in interval from 168.2 cm to 172.2 cm . This means, that measuring the height of all first year students (the whole population) and calculating the actual population mean, this value should stay between calculated limits with 95% probability.

- If somebody calculated 90% or 99% confidence limits, then these should be $(168.5,171.9)$ and (167.5, 172.9). Why is the $\mathbf{9 0 \%}$ confidence interval narrower?
- Calculate the confidence intervals also for other variables and try to formulate the conclusion for at least one of them!!

