Praktikum 5

SISSEJUHATUS

MS Excel pakub oskajale inimesele väga mitmekesiseid võimalusi jooniste tegemiseks. Exceli pakutavate jooniste hulgas on olemas enamus, mida andmeanalüüsi tulemuste illustreerimiseks vaja võib minna. Standardsete jooniste konstrueerimise oskuseid antud juhend põhjalikult ei käsitle, need teadmised eeldatatakse osalejatel juba olemas olevat, ning kui ka pole, ei ole seal midagi nii keerulist, mida kiirelt selgeks ei võiks saada. Käesolev juhend fokusseerub pigem sellele, kuidas konstrueerida Exceli jaoks ebatraditsioonilisi jooniseid ning kuidas kuvada ühel ja samal joonisel visuaalselt atraktiivselt ning võimalikult selgelt ja sisukalt enam infot. Mõningate Excelis puuduvate joonisetüüpide konstrueerimisest on olnud juttu juba eelnevates praktikumides (karp-vurrud diagramm 1. ja histogramm 2. praktikumis), mistap neid joonise käesolevas juhendis ei käsitleta.

Kõik andmed järgnevalt esitatud jooniste konstrueerimiseks on allalaaditavad aadressilt http://www.eau.ee/~ktanel/Exceli_koolitus_EMYs_2014/jooniste_andmed.xlsx

--- Joonistest üldiselt ---

Veel enne Exceli ja tema võimaluste juurde asumist mõned üldised soovitused jooniste konstrueerimiseks.

Nipid, märkused, soovitused.

- Joonis peaks jätma nö puhta ja kerge mulje.
- Joonis peaks olema üheselt mõistetav ka ilma kaasneva jututa/tekstita, selleks on sageli vaja hästi sõnastatud all- või pealkirja, telgede nimetusi, võimalikku joonisel kuvatavat lisainfot.
- Joonis peaks fokusseeruma olulisele
 - info (tulbad, jooned, punktid) peaks katma enamuse joonise alast, laialdased infovabad (näit. valged) alad pole soovitatavad;
 - joonise lugemist nö toetavad elemendid (ruudujooned, joonise piirjooned) ei tohi oma kontrastsuselt konkureerida infot kandvate elementidega (tulpadega, joontega jne);
 - legend vaid siis, kui seda tõesti vaja on (ja legend ei pea alati paiknema joonise vasakus servas);
 - o kas üksnes pealkiri (esitlusel) või allkiri (raportis, artiklis).

Ja lõpetuseks – hea joonise taga on hea idee! Seega, rohkem loovust ja visuaalset mõtlemist, keerukamate jooniste puhul võib enne asja arvutis realiseerima asumist skitseerida soovitud tulemuse paberil.

--- Joonistest MS Excelis ---

Enamasti on Exceli poolt vaikimisi produtseeritavad joonised teadusartikleisse mittesobivad. Peamised probleemid on

- graafikute risustamine mittevajalikuga või ebaotstarbekal viisil (ruudujooned, legendid, pealkirjad, ...),
- telgede vale ulatus,
- telgede ühikute ja/või märgendite ebasobivad vahed või nende puudumine,
- ebaõnnestunud värvikombinatsioonid (vähemtähtsad osad, näiteks ruudujooned, esitatakse silmatorkavamalt, kui tähtsamad osad, näiteks teljed või väärtustele vastavad punktid, ...),
- kolmedimensionaalsete jooniste suur hulk (enamasti need teadusartikleisse ei sobi!),

Täpsemalt vt: Yu-Sung Su. (2008). It's easy to produce chartjunk using Microsoft®Excel 2007 but hard to make good graphs. Computational Statistics & Data Analysis, 52 (10), 4594-4601 (<u>http://dx.doi.org/10.1016/j.csda.2008.03.007</u>) ja sealseid viiteid.

Siiski on Exceli vaikimisi konstrueeritavate jooniste mõningase modifitseerimise korral võimalik saada teadusartikleisse sobivaid diagramme. Tulemused võivad olla äravahetamiseni sarnased statistikapakettide (R, SAS, SPSS, ...) poolt produtseeritavate joonistega ning on sageli lihtsamini konstrueeritavaid (ei ole vaja programmeerimisoskust, piisab klikkimisest vastaval graafiku osal ja selle kujunduse vmt muutmisest).

Järgnevalt tutvustatavad võimalused tähendavad enamasti

- mängimist joonise telgede ja nende ühikutega,
- erinevate joonisetüüpide kombineerimist ühel joonisel,
- fiktiivsete andmeseeriate kasutamist kuvamaks joonisel õigetes kohtades vajalikke lisajooni, sümboleid ja telgi,
- algandmete kerget modifitseerimist, saavutamaks visuaalselt selgemat tulemust.

Nipid, märkused, soovitused.

Kuigi paljuski on jooniste konstrueerimise oskus Excelis kinni kasutaja kogemustes, on järgnevalt ära toodud paar aspekti, mille teadmine vähendab katse-eksituse meetodil tehtava töö mahtu:

- teisel y-teljel esitatud andmeseeriad kuvatakse joonisel alati esimesel y-teljel esitatud andmeseeriate peal seega see andmeseeria, mida tahate kuvada nö taustaks, peab olama paigutatud esimesele y-teljele;
- erinevate joonisetüüpide kombineerimisel ühel joonisel on joonisetüüpide järjekord järgmine: punktdiagramm > joondiagramm > tulpdiagramm > kihtdiagramm (st, et punktid kuvatakse alati joonte peal, jooned alati tulpade peal jne), seejuures ei sõltu see järjekord sellest, millisel y-teljel mingi andmeseeria kuvatakse.

Lisaks kõiksugu trikkidele joonistega olen mina leidnud enese jaoks kasulikud olevat ka kolm järgmist tasuta allalaetavat ja Excelile paigaldatavat lisamoodlit.

- "Daniel's XL Toolbox" (<u>http://xltoolbox.sourceforge.net/</u>), mis lisaks võimalusele teostada näiteks regressioonanalüüsi ilma puuduvate väärtustega ridu eemaldamata või dispersioonanalüüsi selleks spetsiifilist tabelit koostamata, võimaldab konstrueerida väga mitmesuguseid jooniseid ning eksportida neid teadusartiklitesse sobivatesse tiff-, png- ja emf-vormingutesse.
- "XY Chart Labeler" (<u>http://www.appspro.com/Utilities/ChartLabeler.htm</u>), mis võimaldab lisada ja ümber paigutada joonistel kõikvõimalikke märgendeid (kasulik moodul atraktiivsete ja informatiivsete jooniste genereerimiseks).
- "Better Histogram" (<u>http://www.treeplan.com/download-free-better-histogram-add-in.htm</u>) lihtne vahend teaduslikult korrektse histogrammi ja selle aluseks oleva sagedustabeli genereerimiseks (vt lisaülesannet 2. praktikumi lõpus).

JOONISE KONSTRUEERIMINE SÕLTUVALT AVALDAMISE KOHAST – PÄEVALEHT, ETTEKANNE, ARUANNE, TEADUSARTIKKEL (TULPDIAGRAMMI NÄITEL)

Andmed.

Piirivalve	Kriminaalpolitsei	Korrakaitsepolitsei	
1289	1109	1829	Töötajate arv 1. novembril 2012
1421	1189	1927	Tegelik vajadus
132	80	98	Puudu

Andmed: Eesti Päevaleht, 17.12.2012.

Ülesanne.

Konstrueerida joonised, mida sobiks presenteerida järgnevais kohtades.

Teadusartiklis:

Joonis teadusartiklis.

• Oluline on selgus, aga ka visuaalne löövus ja atraktiivsus.

- Klassikalised kujundid ja objektid.
- Enamasti mustvalged joonised (kes see ikka jaksab – hetkel veel – maksta värviliste jooniste eest).
- Vältida tuleks laialdasi infovabu (näit. valgeid) alasid (selleks mängida telgedega, legendi vm lisainfo paigutusega).
- Joonisel koos nii visuaalne kui ka informatiivne element näiteks tulpdigramm, kus tulpade juures on kirjas ka vastav arvväärtus (joonis on tabeli graafiline esitus, mis sisaldab ka tabelis kirjas olevat infot).
- Ka joonise allkiri on joonise osa ja või olla mõnikord mahukamgi, kui joonis ise

Aruandes/raportis:

Joonis aruandes/raportis.

- Sageli värviline, raportile omane läbiv stiil.
- Klassikalised ja lihtsad joonised (tulp-, joon- ja sektordiagramm).
- Pealkirjade asemel allkirjad.
- Vältida tuleks laialdasi infovabu (näit. valgeid) alasid (selleks mängida telgedega, legendi vm lisainfo paigutusega).
- Kas joonise lugemist nö toetavaid elemente (ruudujooned, joonise piirjooned) on ikka vaja? Kui jah, siis peavad need tõepoolst olema mitte silmatorkavad.
- Kompromiss joonisel kuvatava info hulga ja esituse selguse vahel mis on oluline ja mis mitte?

- Pealkirjad.
- Nö valged alad joonisel pole probleem, sageli on neid lausa vaja, et saaks eraldi välja tuua olulisemat või lisainfot.
- Teatud graafiku osade (sektorite, tulpade) visuaalselt eristuvalt välja toomine, kontrastid (näit. tugevad ruudujooned, äärejooned).
- Joonisel koos nii visuaalne kui ka informatiivne element näiteks tulpdigramm, kus tulpade juures on kirjas ka vastav arvväärtus (kogu info tuleb jooniselt + esitleja tekstist).

Politseinike ja piirivalvurite arv ja vajadus

Joonis ajakirjanduses.

- Oluline on visuaalne löövus ja atraktiivsus.
- Nö klassikalistest kujunditest erinevad objektid (koonused, figuurid).
- Taustapildid.
- Pealkirjad.
- Sageli kolmemõõtmelised joonised.
- Teatud graafiku osade (sektorite, tulpade) visuaalselt eristuvalt välja toomine.
- Info nii hulk erinevaid arve ühel joonisel kui ka mitmed erinevad joonised nö ühes paketis kontsentreeritus (inimestel on võimalus esitatusse pikemalt süveneda).

KESKMISED JA ALGANDMED ÜHEL JOONISEL PLUSS GRUPPIDE PAARIKAUPA ERINEVUST NÄITAVAD TÄHED

Osalise juhendi tarvis vt http://www.eau.ee/~ktanel/joonised_excelis/joonis12.php

ERINEVA MÕÕTESKAALAGA TUNNUSTE TULPDIAGRAMM

Osalise juhendi tarvis vt http://www.eau.ee/~ktanel/joonised_excelis/joonis11.php

KESKMISTE PUNKTDIAGRAMM MITTEKATTUVATE VEAJOONTEGA

Andmed.

Näiteandmestik sisaldab lehmade keskmisi kehamasse ja kehamasside standardhälbeid arvutatuna neljal järjestikusel katseperioodil kolme grupi tarvis (katsegrupp1, katsegrupp2 ja kontrollgrupp).

Ülesanne.

580

570

560

550

540

530 520 510

500

I

Kehamass, kg

Konstrueerida mittekattuvate veajoontega keskmiste kehamasside punktdiagramm.

II

Probleem.

Excel paigutab samale x-telje väärtusele vastavad punktid kõik ühele joonele, mistap varieeruvust näitavad veajooned kattuvad:

Katseperiood

ш

IV

Lahendus.

- Tekitada arvuline grupeeriv (katseperioodi näitav) tunnus,
 - 0 mille erinevatele katseperioodidele vastavad väärtused erineksid kindla suuruse võrra ning
 - mille samale katseperioodile, aga erinevatele gruppidele vastavad väärtused oleksid 0 omavahel erinevad (mingi väikese suuruse võrra);
- teha joonis uue tunnuse alusel, •
- lisada joonisele kategooriliste x-telje väärtustega fiktiivne andmeseeria ning määrata selle tüübiks joondiagramm,
- kaotada jooniselt fiktiivse andmeseeria märgendid. •

Tööjuhend.

 Esimese sammuna tuleb arvutada joonisele aluseks olevad keskmised väärtused ja standardhälbed (antud näiteülesandes on need juba olemas).

Järgmisena tuleb tabelisse tekitada uus, omavahel mittekokkulangevate arvväärtustega, grupeeriv (katseperioodi näitav) tunnus.

Seejuures peaks uute väärtuste määramisel arvestama seda, et erinevatele katseperioodidele (x-telje väärtustele) vastavad punktikogumid peaksid visuaalselt selgelt eristuma (et oleks üheselt aru saada, millise x-telje väärtuse kohta mingi punkt diagrammil käib). Muidugi saab neid väärtusi ka joonise tegemise järgselt muuta ...

periood	fig_nädal	grupp	keskmine	st_hälve
1	0,9	Katse1	551,62	14,757
II.	1,9	Katse1	530,12	14,712
III	2,9	Katse1	522,82	16,373
IV	3,9	Katse1	529,31	18,844
1	1,1	Katse2	557,57	16,004
II.	2,1	Katse2	533,78	18,538
III	3,1	Katse2	523,71	20,853
IV	4,1	Katse2	519,03	18,075
1	1	Kontroll	555,06	15,642
II.	2	Kontroll	535,35	13,869
- 111	3	Kontroll	522,3	15,703
IV	4	Kontroll	518,74	15,902

- 2) Edasi tuleb
 - konstrueerida uue lisatud veeru ja keskmiste väärtuste veeru alusel punktdiagramm, pidades seejuures meeles, et kõigi katsegruppide tarvis tuleb joonisele lisada eraldi andmeseeriad;
 - lisada iga andmeseeria (katsegrupi) tarvis punktidele ka veajooned (± standardhälbed);
 - kaotada ära horisontaalsed ruudujooned, muuta keskmiste tähisena kasutatavad sümbolid konkreetsemaks ja mustvalges väljatrükis eristatavamaks ning ühendada need joontega.

Täpsema tööjuhendi tarvis vt eelmise peatüki punkte 2)-4).

Tulemuseks võiks olla alljärgnev joonis:

3) Järgnevalt tuleb joonisele lisada täiendav andmeseeria, mille x-telje väärtusteks on joonise xteljel tegelikult näha soovitavad diskreetsed/kategoorilised väärtused ning y-telje väärtusteks mistahes arvulised väärtused (näiteks joonisele korra juba kantud keskmised).

Lihtsaim variant kirjeldatu teostamiseks on kasutada käske Copy ja Paste (vt joonist).

Muidugi võib uue andmeseeria joonisele lisada ka *Chart Tools -> Design*-sakilt käskude *Select Data -> Add* abil.

Tulemus:

4) Määrates uue andmeseeria tüübiks joondiagrammi (vaikimisi tekitatud punktdiagrammi asemel)

	ile	Home	Insert	Page	Layout	Form	iulas	Data	Review	View	Add-In	s Des	ign	Layo
Chi	hange art Type	Save As Template	Switc Row/Col	h Sel umn Da Data	lect sta	0	Chart La	ayouts	•	* *	•	• *	•	٠
•	61	f_x :	=SERIES(Sheet1	!\$A\$2:\$/	4\$5;Sh	eet1!\$	D\$2:\$D\$	5;4)					
14	A	8	С	D	Y	F	G	Н	1	3	K	L	M	N
1	periood	fignädal	grupp	keskmine	st_hälve	> 1	1			- 3.8.10				
2	1	0,9	Katse1	551,62	14,757	~	580				ntroll	- С- ка	tse1	
3	Ш	1,9	Katse1	530,12	14,712		570		Т	O Ka	itse2	Ser	ries4	
4	10	Å,9	Katse1	522,82	16,373		560 -							
5	IV	3,9	Katse1	529,31	18,844				19					
6	1	1,1	Katse2	557,57	16,004		550	8	ii f	-T	÷.	Т		
7	0	2,1	Katse2	533,78	18,538		540 -	83	TT I	1	TT	-		
8	111	3,1	Katse2	523,71	20,853		530 -			All and	100	-sTe		10
9	łV	4,1	Katse2	519,03	18,075		2322			The		00		- 11
10	1	1	Kantroll	555,06	15,642		520			11				
11	10	Change Charl	Type				510 -					ंचे		
12	- 111	enange enan		-			500 -				1	ΤT		- 11
13	ſV	Template	s Lim	e	-									
14	-	Li Column		X Ka			490 1		1	2	-	4		-
15		校 Line					5		1993) 					4
16		G Pie	Pie											
17		IT Har		D.L.										1

muudab *Excel* automaatselt kategooriliseks ka x-telje ühikud ning paigutab andmepunktid nö klassipiiride vahele, jättes samal ajal siiski paika algselt arvuliste x-telje väärtuste alusel joonistatud keskmiste (± standardhälbed) mittekattuva paiknemise:

- 5) Viimase sammuna tuleb
 - kustutada joonise legendikastist fiktiivse andmeseeria kohta käiv legend,
 - kaotada jooniselt endalt fiktiivse andmeseeria märgendid ja punkte ühendav joon,
 - lisada telgedele nimed ning
 - modifitseerida joonise y-telje ühikuid nii, et diagrammialale liigselt ebainformatiivset tühjust ei jääks.

Tulemus:

NB! Kui sammudel 3)-4) kirjeldatud uue andmeseeria lisamine ja selle tüübi muutmine soovitud tulemust (x-telje ühikud diskreetsed ja andmepunktid klassipiiride vahel) ei anna, tasub proovida veidi pikemat lahenduskäiku. Selle korral tuleb peale uue fiktiivse andmeseeria lisamist ning sellele vastava joonise tüübi muutmist

- paigutada algsete andmeseeriate väärtused teisele x- ja y-teljele,
- muuta teise x-telje skaalat nii, et keskmistele väärtustele vastavad punktid paigutuksid esimese

x-telje diskreetsete väärtuste keskele (ning teise y-telje skaalat nii, et see oleks identne esimese y-telje skaalaga),

• kaotada jooniselt teiste telgede märgendid ja väärtused ning fiktiivne andmeseeria.

Logistiline regressioonanalüüs on enim rakendatav binaarsete (0-1-tüüpi) tunnuste modelleerimise meetod. Uuritav tunnus e funktsioontunnus e sõltuv muutuja (y) sellisel analüüsil mõõdab mingi sündmuse toimumist (väärtus '1') või mitte toimumist (väärtus '0') ning argumenttunnus e sõltumatu muutuja (x) kujutab enesest (pidevat) arvtunnust.

Kuigi uuritava tunnuse väärtuste prognoosimiseks on kasutatav ka lineaarne regressioonanalüüs (võrrand on kujul y = a + bx), ei garanteeri taoline avaldis prognooside jäämist lubatavatesse piiridesse (vahemikku 0-st 1-ni). Sestap on kasutusel mitmeid mittelineaarseid teisendusi, millest levinuim on logit-teisendus.

Logistilise regressiooni valem, prognoosimaks tunnuse *y* väärtusi tunnuse *x* väärtuste kaudu, on kujul:

$$logit(y) = a + bx$$
,

kus logit(y) = y / (1 - y). Uuritava sündmuse toimumise tõenäosus avaldub siis kujul

$$y = \frac{e^{a+bx}}{1+e^{a+bx}} = \frac{1}{1+e^{-a-bx}}.$$

Taolise analüüsi tulemuste illustreerimise peamine probleem on, et uuritaval tunnusel on vaid kaks võimalikku väärtust, mistõttu algandmetele vastavad punktid joonisel kattuvad, tehes väärtuste tegeliku paiknemise visuaalse hindamise võimatuks.

Kuigi taolise analüüsi teostamiseks ning tulemuste illustreerimiseks Excelis otseselt vahendid puuduvad, on vastavad ülesanded piisavate teadmiste ja oskuste korral siiski lahendatavad.

Andmed.

Uuriti taimekahjurite surevust sõltuvalt taimemürgi kontsentratsioonist. Näiteandmestik sisaldab andmeid seitsmel erineval kontsentratsioonil läbi viidud katsete tulemuste kohta (igal kontsentratsioonil 8 katset, kukku 56 katset). Uuritava tunnuse väärtus '1' vastab kahjuri surmale ja väärtus '0' kahjuri ellu jäämisele.

	A	В	
1	kontsentratsioon	efekt	
2	10		0
з	10		0
4	10		0
5	10		0
6	10		0
7	10		0

Ülesanne.

Konstrueerida diagramm illustreerimaks logistilise regressiooni tulemusi – esitada algandmetele vastavad punktid mittekattuvana ning joonistada logistilise regressioonifunktsiooni graafik (argumenttunnuse väärtuste piirkonnas pideva joonena ning sellest väljaspool kriipsjoonena).

Probleem.

Exceli punktdiagramm esitab samadele väärtustele vastavad punktid ülestikku, tehes võimatuks väärtuste mingis piirkonnas paiknemise hulga visuaalse hindamise (üks väärtus näib joonisel samaväärsena 10 väärtusega). Teine probleem on see, et Excel alustab telgi ja nende skaalat alati vähimast väärtusest ega võimalda esitada joonisel telgede ulatusest välja poole jäävaid väärtusi.

Lahendus.

- Muuta samas punktis paiknevaid väärtuseid nii, et nad paigutuksid joonisel kõrvuti;
- esitada telgede skaala nii, et kõik punktid tõesti joonisele ära mahuksid, aga seejärel keelata *Excelil* algse telje ja selle väärtuste kuvamine ning tõmmata selle asemele joon ja kirjutada väärtused fiktiivse andmeseeria alusel (mis visuaalselt moodustab graafiku telje).

Tööjuhend.

 Esimese etapina tuleb hinnata logistilise regressioonivõrrandi parameetrid *a* ja *b*. Seda võib teha mõne statistikaprogrammi abil, lihtsamatel juhtudel mõne Interneti-lehe abil (näiteks <u>http://statpages.org/logistic.html</u> või <u>http://faculty.vassar.edu/lowry/logreg1.html</u>) või ka Excelis lisamooduli *Solver* abil (vt näiteks <u>http://archives.math.utk.edu/ICTCM/VOL13/C013/paper.html</u>).

Selguse mõttes võiks saadud hinnangud Exceli töölehele ka kirja panna.

2) Logistilisele regressioonivõrrandile vastava joone esitamiseks graafikul tuleb teha abitabel, kus ühes veerus (või reas) paiknevad argumenttunnuse väärtused, mida soovitakse joonisega illustreerida (joone sujuvuse huvides peaksid need väärtused olema järjestatud ja väikeste vahedega), ning teises veerus (reas) neile vastavad logistilise regressioonivõrrandiga

$$y = \frac{e^{a+bx}}{1+e^{a+bx}} = \frac{1}{1+e^{-a-bx}}.$$

prognoositud uuritava tunnuse väärtused:

	E	F	G	н	1	J
1		Logistilise r	egressioonivõrr	andi parar	neetrite h	innangud
2		а	ь			
З		-2,4599	0,0721			
4						
5						
6		x	y = 1 / [1 + exp(-a)]	a - bx)]		
7		0	0,078720			
8		1	=1/(1+EXP(-\$F\$3	\$G\$3*F8))	
9		2	0,089832			
10		3	0,095904			
11		4	0,102339			
12		5	0,109154			
13		6	0,116364			
14		7	0 122985			

- 3) Konstrueeritud abitabelis paiknevate väärtuste alusel tuleb joonistada punktdiagramm, kusjuures soovides esitada logistilise regressioonivõrrandi graafikut argumendi väärtuste piirkonnas (10-70 mg) pideva joonena ja väljaspool seda (näiteks 0-10 mg ja 70-80 mg) kriipsjoonena, tuleb diagrammile kanda kolm erinevat andmeseeriat:
 - esmalt argumendi väärtuste piirkonnale vastavad punktid (prognoosid) ning
 - seejärel eraldi argumendi väärtuste piirkonnast väiksematele väärtustele vastavad prognoosid ja suurematele väärtustele vastavad prognoosid.

Tulemus:

• Peale joonisele kantud punktide sobivat tüüpi joontega ühendamist (andmeseeriate kaupa) ja punkte tähistanud sümbolite kaotamist, ruudujoonte ja legendi kustutamist ning telgede ühikute kohendamist peaks joonis välja nägema järgmine:

4) Järgnevalt tuleks joonisele lisada algandmetele vastavad punktid.

Kui teha seda efekti väärtustena vaid nulle ja ühtesid sisaldava tabeli põhjal, on tulemuseks suhteliselt ühtlaselt kahele horisontaalsele joonele paigutuvad üksikud punktid, mis ei ole eriti informatiivsed, illustreerimaks väärtuste tegelikku paiknemist:

4	A	В	С	D	E	F	G	Н	1	J	K		L	М	N	0	F
1	kontsentratsioon	efekt			Logistilise (regressioonivõrra	andi paran	neetrite	hinnangud								
2	10	0			а	b											
З	10	0			-2,4599	0,0721			* *				3333				
4	10	0							1.0 1								
5	10	0															
6	10	0			x	y = 1 / [1 + exp(-a	- bx)]								\sim		
7	10	0			0	0,078720			0,8 -								
8	10	0			1	0,084110											
9	10	0			2	0,089832			0,6 -								
10	20	1			3	0,095904											
11	20	1			4	0,102339			04								1.1
12	20	0			5	0,109154			0,4		/						
13	20	0			6	0,116364											
14	20	0			7	0,123985			0,2	/							
15	20	0			8	0,132029				-							
16	20	0			9	0,140512			0.0				-				_ []
17	20	0			10	0,149446			0	10	20	30	40	50	60	70	80
18	30	1			11	0,158843							9.9.9.9				40
			_					_		_		_	_	_		_	

4.1) <u>Lahenduseks</u> on arvutada joonisel esitamiseks uued mittekattuvad efektide väärtused ja teha seda

nii, et

- esimene samale kontsentratsioonile vastav väärtus 0 (või 1) jääb paika,
- iga järgmine on eelnevast aga mingi väikese suuruse võrra väiksem (või suurem).

Excelis on kirjeldatu teostamiseks lihtsaim variant

• <u>sorteerida andmetabel</u> ära argumenttunnuse (antud näites 'kontsentratsioon') väärtuste ja seejärel funktsioontunnuse ('efekt') väärtuste järgi;

	A	В	
1	kontsentratsioon	efekt	Sort ? 🗙
2	10	0	
з	10	0	♀_j Add Level X Delete Level □ Copy Level ▲ ▼ Options V My data has headers
4	10	0	
5	10	0	Column Sort On Order
6	10	0	Sort by kontsentratsioon Values Smallest to Largest
7	10	0	
8	10	0	Inter by efekt Values Smallest to Largest
9	10	0	
10	20	0	
11	20	0	
12	20	0	
13	20	0	
14	20	0	
15	20	0	
16	20	1	
17	20	1	
10	20	0	

- <u>arvutada uue tunnuse väärtused</u> funktsiooni IF abil:
 - kontrollides esmalt, kas parajasti täidetavas reas on tegu sama kontsentratsiooniga ja sama tulemusega, kui eelmises reas;
 - kui on, siis vähendades või suurendades (vastavalt sellele, kas efekti väärtuseks on 0 või 1) rida üleval pool paiknevat efekti väärtust mingi väikese suuruse (näiteks 0,015; 0,025 vmt) võrra,
 - o kui ei ole, siis võttes mittekattuva efekti väärtuseks algse efekti väärtuse.

	√ (× ✓ f _x =IF(AND(A3=A2;B3=B2);IF(B3=0;C2-0,015;C2+0,015);B3)												
	A	В	С	D									
1	kontsentratsioon	efekt	mittekattuv efekt										
2	10	0	0										
З	10	0	=IF(AND(A3=A2;B3=	B2);IF(B3=0;C2-0,015;C2+0,015);B3)									
4	10	0	-0,03										
5	10	0	-0,045										
6	10	0	-0.06										

4.2) Lisades joonisele uue andmeseeriana mittekattuvate efektide veeru (x-telje väärtusteks on muidugi esimeses veerus paiknevad katsetel rakendatud kontsentratsioonide väärtused), on tulemuseks miskit alljärgnevat:

ogistilise regressioonivõrrandi parameetrite hinnangud	
a b	
-2,4599 0,0721	
1,0	N ⁸⁸ I
x y=1/[1+exp(-a-bx)] 0.8	
0 0,078720	
1 0,084110	
2 0,089832 0,6 -	
3 0,095904	
4 0,102339 0,4 -	
5 0,109154	
6 0,116364	
7 0,123985	
8 0,132029	
9 0,140512 0,0 88	
10 0,149446 0 10 20 30 40	50 60 70 80
11 0 158842	

Edasi tuleks vajadusel muuta y-telje ühikuid nii, et kõik väärtused joonisele ära mahuksid (vt kõrvalolevat joonist) ning

kujundada uue andmeseeria esitus sobivaks (kaotada ära punkte ühendav joon ning asendada Exceli poolt vaikimisi andmepunktide tähistamiseks kasutatav sümbol väiksema ja sobivama sümboliga.

Tulemus:

5) Saadud joonisel on veel mitmeid kujunduslikke puudujääke.

Esmalt võiks vertikaalne telg omada väärtusi vaid 0-st 1-ni (sest vaid nendes piirides saab muutuda kahjurite suremistõenäosus). Excel seda aga ei võimalda, sest reaalselt paiknevad andmed ju ka 0-st allpool ja 1-st üleval pool ning piirates telje ulatuse 0-i ja 1-ga, jääb enamus just graafikule lisatud punkte seal kuvamata.

Lahenduseks on

• keelata Excelil vertikaalse telje ja selle väärtuste kuvamine,

• sisestada *Exceli* töölehele abitabel lisamaks graafikule joont otspunktidega (x, y) = (0, 0)ja (x, y) = (0, 1) ning punkte (näiteks) sammuga 0,2 (nende punktide alusel kujunevad fiktiivsele y-teljele ühikud),

y-telg						
x	0	0	0	0	0	0
У	0	0,2	0,4	0,6	0,8	1

• lisada loodud abitabeli alusel joonisele uus andmeseeria ning muuta selle kujundust (andmepunktide tähiseks tumehall rist suurusega 3 ja jooneks tumehall peenike pidev joon), täiendavalt tuleks lasta *Excelil*

lisada graafikule uue andmeseeria andmepunktide väärtused (andmepunktidest vasakule poole).

6) Joonisele võiks lisada ka veel horisontaalse joone tõenäosuse 1 kohale – selleks võib põhimõtteliselt lisada joonisele teised koordinaatteljed ja "mängida" nendega, aga lihtsam on kasutada sarnaselt vertikaalse telje joonistamisele fiktiivset andmeseeriat.

7) Kui andmepunktid kipuvad x-teljel paiknevaid väärtuseid varjama, võiks lasta *Excelil* need kirjutada allapoole, ja x-telje märgenditeks kasutatavad jooned võiks tõmmata teljega risti, et oleks sarnane tähistus y-telje märgenditega (kuigi see on rohkem maitse asi).

No ja kõige viimaks võiks telgedele lisada ka nimed ja joonisele veel teaduslikuma väljanägemise tarvis ka logistiline regressioonivõrrand (viimane on *Excel* 2007-s ja 2010-s lisatav näiteks tekstikastina). Valmis.

LIHTSALT MÕNINGAID NÄITEID JOONISTEST ERINEVATES KOHTADES

Eesti Päevaleht, 17.12.2012.

Radar, nr 13, 2012.

--- Aruanne ---

VÕTA tagasisideküsitlus 2012 (koostanud: Lilian Ariva, Tanel Kaart)

--- Ettekanne ---

Martin Mandel. Ahvena (*Perca fluviatilis*) kasvust Eesti väikejärvedes. EMÜ VLI. Magistritöö kaitsmine 31.05.2013.

--- Teadusartikkel ---

NB! Kõik järgnevad joonised on tehtud Excelis midagi graafikaprogrammidega lisamata. Ning üks joonis on tõepoolest üks terviklik joonis ka Excelis, mitut joonist üksteise peale ei ole tõstetud.

Joonis 1. Lehmade esimese laktatsiooni kontroll-lüpside keskmine (± standard-hälve) piimatoodang pullide kaupa ja pullide piimatoodangu aretusväärtused (JKK andmed 01.01.2011).

Kaart, T.; Petrova, A.; Kiiman, H. 2013. Kas ja kuivõrd avalduvad kogu Eesti piimaveiste populatsiooni baasil hinnatud aretusväärtused ühe karja piires? Kogumikus: Terve loom ja tervislik toit 2013, Tartu, 21.-22. märts 2013. (Toim.) Jaakma, Ü.; Henno, M.; Kass, M.; Jaakson, H.; Jalakas, M.; Orro, T.; Roasto, M.; Praakle, K. Tartu: Eesti Maaülikool, 2013, 46-53.

Figure 3. Estimated percentage (\pm standard error) of walking at different days and periods according to the logistic model, different subscript letters denote statistically significantly (p<0.05) different timeperiods.

Pavlenko, A.; Kaart, T.; Arney, D.; Lidfors, L.; Aland, A. 2014. The influence of alteration of keeping system on milking cows' behaviour and performance.

Figure 1. Least square means (\pm standard error) of parasitism rate of *M. aeneus* larvae and species composition (circle size corresponding to the culture and year) and total numbers of *M. aeneus* larval endoparasitoids (numbers inside or above circles) found from 2nd instar larvae on different host plant flowers in 2009-2011. Different letters indicate statistically significant (P < 0.05) differences between cultures at the same year or over whole study period 2009-2011 (according to logistic model considering effects of culture and year (only in whole study period analysis) and nonzero covariance between observations corresponding to the same replicate in parasitism rate comparison and Fisher exact test in endoparasitoids species composition comparison).

Kaasik, R.; Kovács, G.; Metspalu, L.; Williams, I.; Veromann, E. 2014. *Meligethes aeneus* Fab. oviposition preferences, larval parasitism rate and parasitoids' species composition on *Brassica napus* compared with *Brassica nigra*, *Raphanus sativus* and *Eruca sativa*. Biological control, 69, 65-71.

Figure 2. Results of the site occupancy modelling. Grey bars denote the conditional probabilities of ponds occupancy given the detection history; black squares denote pond occupancy probabilities estimated from the best model, considering variables: shade; sand within 100 m of the pond and number of other water bodies within a 100-500 m radius; error bars denote standard errors; dotted line with hatched area mark the overall occupancy rate 0.53 with 95% confidence interval.

Rannap, R.; Markus, M.; Kaart, T. 2013. Habitat use of the common spadefoot toad (*Pelobates fuscus*) in Estonia. Amphibia-Reptilia, 34, 51-62.

Figure 1. The mean water loss rates (VH2O μ l h-1) of forager bumble bees treated with different powdery formulations (Prestop Mix, BotanyGard® 22WP, wheat flour and kaolin or blank control) at 18°C – each line corresponds to single individual. Bars denote average (± standard st.deviationdev.) values in groups and numerically are presented average (± st.andard dev.iation) changes. Stars indicate statistically significant (P<0.05) differences between the powdery formulations (properly defined contrasts in generalized linear model analysis followed by Benjamini-HochbergBonferroni-Holm correction for multiple testing).

Figure 2. Bumble bee survival probability (%) and longevity (days) in temperature 28°C in case of different powdery formulations (Prestop Mix, BotanyGard® 22WP, wheat flour and kaolin or blank control). Box-plots present minimum, lower quartile, median, upper quartile and maximum, numbers upon the boxes denote medians and different letters indicate statistically significant differences between groups (pairwise Wilcoxon tests followed by Bonferroni-Holm correction for multiple testing).

Karise, R.; Muljar, R.; Kaart, T.; Smagghe, G.; Kuusik, A.; Mänd, M. 2014. Inert dusts do not interfere the respiration in bumble bees but change the water loss rate.