
Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 1

Practical 2 – part 1

Review the following text, open (if needed, install) the R and try the commands from the text

(generate some data, try to find some descriptive statistics and make some charts).

1. GENERAL INTRODUCTION TO R

Foreword

At the very beginning of computerized data analysis era people started to create small dedicated

programs, each of which was able to solve one or a few data analysis problems. As the number of

these small programs increased they were collected into statistical packages --- in such a way

statistical packages like SAS or SPSS were created. In such package solving some particular task is

easy and efficient but to complete an entire data analysis project is still rather tricky – because the

integration between these separate programs in the collection is weak and each small program was

designed keeping in mind only one task at time.

Some statisticians (Richard A. Becker, John M. Chambers and others) got very frustrated with such

software and they published in 1984 an article describing how ideal statistical software should look

like. It took some time before there appeared useful computer programs which tried to fulfil their

dream. At present there are two of them: S-plus and R. They are rather similar – if one knows how

to use R then he/she can also use S-plus. However, there exist minor differences: R is free, S-plus

costs quite a lot of money; S-plus handles large datasets in more efficient way etc.

As a surprise to some computer users R does not have small buttons to which to click to get your

analysis done. Instead one has to give commands and write a program to do the data analysis. Why?

There are a few reasons. First, you can always show your program to others interested in your work

and they can understand how did you do your analysis, check the analysis for errors or simply

repeat everything exactly as you did it. In science it is important that others can repeat your analysis

and can see how you come to your conclusions. At second, it simply is a faster way to get the

analysis done. The first time you do the analysis it can be quite time-consuming (especially if you

do not yet know the commands), however during a typical real-life data-analysis project one usually

has to reanalyze the data ten or more times (additional observation became available during the

work, data-entry errors will be discovered as work progresses, referees require additional analysis or

transformations etc). It is not easy to repeat a thousand-click analysis for ten times without making

mistakes especially if the time between the reanalyses can be measured in months – you just might

not remember one checkbox you had to select to get correct answers. But if you have a program,

you just modify one command and run it again to get all the result desired.

Installing R

R is freeware program available for Windows, Linux, MacOS X and for other platforms. You can

download R for Windows by going into the R-homepage (http:\\www.r-project.org), select CRAN

(under Download) -> select a mirror site near you -> Windows -> base -> R-…..exe.

After downloading the executable you should run it to install R to your computer.

In certain platforms (Windows XP, for example) the cruel administrator of the computer might have

denied the users the right to install new programs to the computer. If this is the case you might

encounter a few error messages at the end of the installation process – R is not able to put the icons

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 2

into the start menu/desktop. Do not worry – you should still be able to run the program: just search

the computer for the file Rgui.exe and run it – R should work without problems. Nevertheless, it

would be polite to ask someone in charge in the computer class to install the new software.

The standard installation requires approximately 50-60 Mb of disk space, together with some

additional add-ins and contributed packages it can easily take 600Mb or more on your hard disk.

References

If you want additional materials or books about R, here are a few recommendations for beginners:

1. An Introduction to R (Available from http:\\www.r-project.org -> Manuals -> An Introduction to

R). A useful starting point to R could be to try out the sample session (given in Appendix A).

2. John Maindonald. Using R for Data Analysis and Graphics - Introduction, Codes and

Commentary. Available from http://cran.r-project.org/doc/contrib/usingR.pdf.

3. Peter Dalgaard. Introductory Statistics with R. Springer, 2002. ISBN 0-387-95475-9.

Remark: you can find book 2 and other great online texts/books on R-homepage under the selection

Documentation / Other -> contributed documentation

(http://cran.r-project.org/other-docs.html).

There are also books in other languages.

Eesti keeles on Internetist leitav hulk vähem või rohkem põhjalikke õpetusi, millest esialgu võiks

ehk silmad üle lasta ja huvi korral ühtteist kirjeldatust proovida Krista Fischeri ja Märt Mölsi

konspektidest (järgnev ingliskeelne juhend hõlmad suuresti neis konspektides õpetatut).

1. Märt Möls (TÜ, matemaatiline statistika), „Sissejuhatus R-i“ –
http://www.ms.ut.ee/mart/biomeetria2010/praks1.pdf.

2. Allan Sims ja Andres Kiviste (EMÜ, metsandus), „Statistiline analüüs R keskkonnas
metsanduslike näidetega“, 2006, 72 lk – http://www.eau.ee/~allsi/Rkonspekt.pdf

3. Ott Toomet (TÜ, majandus) – http://www.obs.ee/~siim/Rintro.pdf

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 3

1.1 Getting started

After starting R you should see the command prompt „>“, showing that R is waiting for your

commands. You can simply type 2+3 after the command prompt and press the Enter key. You

should get the answer to your question:

Therefore it is possible to conclude: R can be used for doing simple calculations. You can try the

following calculations, for example (try all of them out by yourself as well as the examples that

follow through the text):

> 2**8 - calculate 28, equivalently you can enter 2^8 to get the same answer;

> sin(0.5*pi) - standard functions like sin, cos, log, exp etc are available;

> (2+3)*4 - use brackets, if needed;

> sqrt(9) - square root of 9;

> sqrt(1:10) -

Notice that one has to use a dot (.) to separate decimal places in numbers, not comma (,).

If needed, intermediate results could be saved, and used later as needed. Try it out!

> x=2

> y=sqrt(2)

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 4

To see the saved value, just type the name of the object:

> x

[1] 2

> y

[1] 1.414214

And you can use them in later calculations:

> (4+x)/2

> y**2

> z = (0:10)+ x

If you want to recall the names you have used to save the results, just type ls():

> ls()

[1] "z" "x" "y"

If you want to remove one of them, type rm(<name of unwanted object>):

> rm(y)

> ls()

[1] "z" "x"

If you want to delete them all, use the command rm(list=ls()):

> rm(list=ls())

> ls()

character(0)

Please notice, that R is case sensitive, e.g. object „x“ is different from object „X“:

> x=2

> X=3

> x+X

[1] 5

> SQRT(4)

Error: could not find function "SQRT"

> sqrt(4)

[1] 2

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 5

Remark: In addition to „=“-sign one can use „<-“ to assign a value to the object:

> x<-32

> x+2

[1] 34

Weird values in R: you may encounter or use values like Inf, -Inf, NA, NaN during your

calculations:

> 1/0

[1] Inf

> -1/0

[1] -Inf

> Inf+2

[1] Inf

> log(0)

[1] -Inf

> mean(c(2,3,NA))

[1] NA

> 0/0

[1] NaN

As you might have quessed, Inf is an infinitely big number, NA – missing (Not Available) value,

NaN – Not A Number;

Sometimes R uses scientific notation:

> 1/10000

[1] 1e-04

> 10**6

[1] 1e+06

Finding help

You can ask for additional information about a function by using ? or help():

> ?mean

> help("if")

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 6

If you are unsure about the name of a command, but you still remember part of the name, you might

try the function apropos():

> apropos("cos")

> apropos("test")

If you do not know the name of the function, then you might try to select from the menu

Help -> HTML Help

Common mistakes

For every bracket that starts „(“ there must be a corresponding closing bracket „)“, for every

starting apostroph (") there must be a corresponding closing one. In R one command can be splitted

into multiple rows. However, sometimes we do unintentionally – for example sometimes we forget

to close the apostrophe in preceding line. In this case the prompt changes to + sign and a perfectly

correct command may be added to the one with a mistake. R interprets them together and finds, that

the combined command has mistakes, even though the last command you gave was correct.

To cancel last command (which had mistakes in it) you can just press Escape-key and normal

prompt > should reappear.

One can recall last command issued by pressing the up arrow.

Writing programs

Often it is wise to write commands in a separate window – one can use notepad or the integrated

Script editor. You can then run your program or selected commands by either making a copy-and-

paste from the text editor (notepad), or by selecting some rows in Script editor and pressing Ctrl+R.

You can document the work you are doing in such way. One can and should add comments to the

program. Every line beginning with the symbol # is ignored by the R and hence can contain the

comments suitable for humans.

Documenting and saving your work

 You can save all the objects you have created in R by choosing from the menu

File-> Save Workspace.

 Of course one can restore all the objects creted during a previous session by loading the

Workspace one desires.

 All commands issued during a session can be saved to a text file by selecting

File -> Save History.

 The file you created via „Save History“ can be opened and edited using notepad, for example.

 File -> Save to File

saves all the commands together with the results given to a text file (everything you see on the

window named „R Console“ will be saved).

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 7

1.2 Acquiring Data

To do Data Analysis one needs data. For meaningful results the dataset should be entered or

imported correctly into the program one intends to use. In this section we will investigate some

possibilities to get the data to R.

Entering Small amounts of Data within the program

If you need to enter only a few values (at the moment), it might be good idea to do it within your

program. A few examples will follow:

> explevel=c(987, 604, 802, 340, 560, 660)

> explevel

> mean(explevel)

> summary(explevel)

> genotype=c("AA","Aa","AA","aa","Aa","Aa")

> table(genotype)

> barplot(table(genotype))

> mydata=data.frame(genotype, explevel)

> mydata

Eventhough one can enter as large datasets as one wishes in such a way, it usually is viable only in

for tiny amounts of data to be eneterd in such a way.

Browsing and modifying the dataset

To print the dataset named mydata one has to simply ask for it:

> mydata

or, for just a few (3) observations, one can issue a following command:

> mydata[1:3,]

To see the dataset in an Excel-like environment one may issue a command

> edit(mydata)

Eventhough you seem to be able to modify the data values after giving the command

edit(mydata), you actually cannot change the actual dataset. If you want to modify the

underlying dataset you could issue the following command:

> mydata2=edit(mydata)

After issuing such a command all modifications you do in the edit window will be saved to a new

dataset called mydata2. The old, unmodified, dataset mydata remains unchanged.

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 8

Importing data from Excel / from text (CSV) file

Often data is entered in a spreadsheet-style program like Excel or Calc (OpenOffice). There are

many different ways to import data from Excel, but maybe the easiest and most reliable way is to

save the spreadsheet as a csv-file – choose from menu Save As, and change the save as type to CSV

(comma delimited).

Unfortunately Excel may create very different CSV-files depending on the computer parameters

(CSV-files created tend to depend on country they are created). Therefore, in the first time we make

such a conversion, we should take a quick look at the file created by Excel. What separates the

variables or values from each other? Which symbol is used to separate decimal places in a number?

To read an CSV-file to R we may type the following command:

imported=read.csv(“C:/myfiles/FromExcel.CSV“,header=TRUE,sep=“;“,dec=“,“)

imported

Lets see a few examples of CSV-files (as opened in text editor) and the corresponding read.csv

commands

dataset=read.csv(“C:/temp/Excel2.CSV“,

header=TRUE, sep=“;“, dec=“,“)

dataset=read.csv(“C:/temp/Excel2.CSV“,

header=TRUE, sep=“,“, dec=“.“)

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 9

dataset=read.csv(“C:/temp/Excel2.CSV“,

header=FALSE, sep=“;“, dec=“.“)

For more detailed questions look at the section R Data Import/Export in your HTML Help file.

Topics covered in the help file include: importing data from other statistical packages like SPSS;

picking up data from Relational databases like Oracle and MySQL; how to read dbf-files etc.

Generating data

Sometimes the data needed can be easily generated. For example one can generate consecutive

numbers (like observation number) using the following command:

> 1:25

> ObsNr=1:45

> ObsNr

Trickier sequences can be generated using functions like seq and rep:

> seq(0,10, by=2)

> seq(0,100, length=8)

> rep(1, 5)

> rep(c(1,10), 5)

> rep(c(1,10), c(3,5))

Sometimes it is useful to generate just random data. Use functions like runif and rnorm for this:

> x=rnorm(100)

> y=1+2*x+rnorm(100)

> plot(x,y)

How to add the variables you generate to an existing dataset? The already familiar function

data.frame can be used. If you still have the previously generated dataset mydata, you can use

the following commands to add observation number to the dataset:

> Obs=1:6

> mydata=data.frame(mydata, Obs)

> mydata

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 10

Saving and loading R datasets

For saving a (specific) dataset one can use the save command. Instead of (/) one can also use (\\)

when giving the file path:

> save(genedata, file="C:\\temp\\genes")

To retrieve the dataset use the load-function:

> load("C:\\temp\\genes")

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 11

1.3 Referring, searching and subsetting data

At the beginning we might want to create a small dataset called genedata:

> genedata=data.frame(phenotype=c(120,134,140,146,200),

+ gene=c("A","A","B","B","B"))

> genedata

phenotype gene

1 120 A

2 134 A

3 140 B

4 146 B

5 200 B

Now few examples:

genedata[1:3,] – first 3 observations

genedata[3, 1] – observation 3, the value of 2. variable

genedata$gene – all genotype values

genedata$gene[2:3] – genotype values for observations 2 to 3

It can be laborious to write the dataset name in front of the variable name. However, it is possible to

say to R, that from now on we work with a particular dataset. Then we can refer to the variables by

using only the name of the variable. This can be done by using the function attach():

> genedata$phenotype

[1] 120 134 140 146 200

> phenotype

Error: object "phenotype" not found

> attach(genedata)

> phenotype

[1] 120 134 140 146 200

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 12

How to select observations corresponding to the genotype „A“?

> genedata[gene == "A",]

phenotype gene

1 120 A

2 134 A

How to select only phenotype data corresponding to genotype “A“?

> phenotype[gene == "A"]

[1] 120 134

How to select genotypes corresponding to below-average phenotypes?

> gene[phenotype<mean(phenotype)]

[1] A A B B

Levels: A B

One can use the selected observations as a starting point for further analysis. For example the mean

or average phenotype values for genotype „A“ can be calculated:

> mean(phenotype[gene=="A"])

[1] 127

Sometimes the values in a variable have to be transformed before the analysis. Sometimes it is

useful to change units, sometimes to make data more „normal“, sometimes because other reasons.

How one can make such a transformation? We shall see a few options.

lnfeno=log(phenotype) – make a new variable called lnfeno containing logarithmic phenotype values.

Notice that this new variable is not a part of genedata dataset. You may add it to the dataset by using

the function data.frame().

genedata$logfeno=log(phenotype) – a new variable logfeno is added to the genedata dataset. You

have to reattach the dataset to use the short name for the variable:

> genedata$logfeno=log(phenotype)

> genedata

phenotype gene logfeno

1 120 A 4.787492

2 134 A 4.897840

3 140 B 4.941642

4 146 B 4.983607

5 200 B 5.298317

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 13

> genedata$logfeno

[1] 4.787492 4.897840 4.941642 4.983607 5.298317

> logfeno

Error: object "logfeno" not found

> detach(genedata)

> attach(genedata)

> logfeno

[1] 4.787492 4.897840 4.941642 4.983607 5.298317

A few useful commands:

dim(genedata) – finds the dimensions (number of observations and variables) of a dataset

length(fenotype) – finds the number of observations in a vector (variable)

names(genedata) – variable names

summary(genedata) – brief summary for each variable

Pay Attention!

1. If we pick subsets from a dataset (data frame), we always have to have a comma (,) within the

square brackets:

dataset[<selected observations>, <selected variables>]

If we subset from a data vector (variable), then we do not have to specify the variable any more and

comma is not needed:

variable[<observations to select>]

2. Square brackets are used only for selecting observations from a dataset/variable. They must

immediately follow the dataset/variable name.

3. To check equality double equal signs (== instead of =) have to be used! Single (=) is used to

assign a new value to an object (and the old value will be deleted)!

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 14

2 DESCRIPTIVE STATISTICS WITH R

Before starting with basic concepts of data analysis, one should be aware of different types of data

and ways to organize data in computer files.

2.1 Some basic terms

Population – an aggregate of subjects (creatures, things, cases and so on). For a given study, a

target population has to be specified: on which subjects we’ll generalize or use the results?

Sample – collection of subjects in the study. In general, a sample should be representative for the

target population.

Observation – a study unit or subject or an individual. Often a human being, also an animal, plant

or anything else.

Variable – quality or quantity, measured or recorded for each subject in the sample (age, sex,

height, weight, smoking level, etc.).

Dataset – a set of values of all variables of interest for all individuals in the study. The numeric

results obtained from the dataset will be used to draw conclusions about the target population.

2.2 Organization of data

A dataset is mostly organized (and stored as a computer file) in a form of a data matrix.

A data matrix representing sex (1-male; 0-female), age, no. of children, weight (kg), and height (cm)

of 7 individuals:

NO SEX AGE NO OF CHILDREN WEIGHT HEIGHT

1. 0 57 1 65 158

2. 1 70 3 100 175

3. 0 45 0 71 162

4. 0 38 2 58 164

5. 0 25 1 81 170

6. 1 50 4 68 172

7. 1 61 0 85 179

Each row of such a matrix represents one observation. All rows have the same length: the same data

has been recorded for all individuals.

Each column represents one variable.

For instance, WEIGHT is the name of a variable, representing the body weight (in kg) of an

individual.

2.3 Types of data

• Numeric data

– Discrete data – the variable can take only integer values (0, 1, 2 etc.)

examples: number of children, number of friends

– Continuous data – any real-numbered values (often within a certain range) are possible

examples: body weight, age

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 15

• Qualitative (non-numeric, categorical) data

– Nominal data: unordered categories

examples: blood group, eye color

– Ordinal or ordered data: ordered categories

examples: smoking level, attitudes (good-moderate-bad)

Numeric coding of nominal or ordered data does not make the data numeric!

2.4 Summarizing/presenting data

Mean

The sample mean is the arithmetic average of the data.

It can be calculated, by summing all of the data values and dividing the sum by the total sample size.

Example:

Data: 1 3 5 2 9

Mean: (1 + 3 + 5 + 2 + 9)/5 = 20/5 = 4

Mathematically: for a variable X, mean is often denoted as x and calculated as:

 1 2

1

1
n

n
i

i

x x xx x
n n

,

where x1, x2, . . . , xn denote observations of a variable and n is the number of observations in the

sample.

R:

> x = c(1,3,5,2,9)

> mean(x)

> [1] 4

If there are missing values:

> x = c(1,3,5,2,9,NA,7,10)

> mean(x)

[1] NA

> mean(x, na.rm=T)

[1] 5.285714

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 16

Median

Sometimes it is of interest to sort values of a variable in ascending or descending order. The order

number of an observation in such a row is called as rank.

Median is the middle point of ordered data – either the middle observation (if the number of

observations is odd) or the average of the two middle observations (if the number of observations is

even).

Example:

Body heights of 11 individuals (in cm):

155, 160, 171, 182, 162, 153, 190, 167, 168, 165, 191.

Ordered data:

153 155 160 162 165 167 168 170 171 182 191

median: 167

R:

> x = c(155, 160, 171, 182, 162, 153, 190, 167, 168, 165, 191)

> median(x)

[1] 167

> x = c(155, 160, 171, 182, 162, 153, 190, 167, 168, 165, 191, 175)

> # added 1 observation

> median(x)

[1] 167.5

The advantage, but sometimes also the disadvantage of the median is, that it is not affected by

extreme values in the data. It does not matter, how small or how big are the values that are larger

or smaller than the median.

Neither the mean nor the median provides sufficient information about the data: one should also

know about variability.

Standard deviation (SD, s) is a quantity that reflects the variability of the sample. One could

interpret SD as the approximate mean distance from the mean.

More precisely, SD is defined as the square root of the variance (s
2
) (sum of squared differences

from the mean divided by sample size minus 1; the latter called as the sample variance, s
2
),

 2 2

1

1 ()
1

n

i

i

s x x
n

,

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 17

2 2

1

1 ()
1

n

i

i

s s x x
n

.

Similarly to the mean, standard deviation is sensitive to the extremes in the data.

R:

> x=c(1,4,5,7,8,11)

> mean(x)

[1] 6

> median(x)

[1] 6

> var(x) # variance

[1] 12

> sd(x) # standard deviation

[1] 3.464102

> x=c(1,4,5,7,8,110) # change the last observation from 11 to 110

> mean(x)

[1] 22.5

> median(x)

[1] 6

> var(x)

[1] 1843.5

> sd(x)

[1] 42.936

A more robust approach is to divide the distribution of the (ordered) data into four, and find the

points below which are 25%, 50% and 75% of the distribution.

These are known as quartiles (the median is the second quartile).

Example: a sample:

6 9 9 10 9 10 3 12 7 6 6 4 8 8 3 8 6 4 11 11

The ordered sample

3 3 4 4 6 6 6 6 7 8 8 8 9 9 9 9 10 11 11 12

The ordered sample divided to 4 parts:

3 3 4 4 6 | 6 6 6 7 8 | 8 8 9 9 9 | 9 10 11 11 12

Quartiles: the cutpoints: 6, 8 (the median) and 9.

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 18

R:

In R, you can use function quantile to get median and quartiles, or you can also use the function

summary, to get also the mean:

> z=c(3, 3, 4, 4, 6, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9, 9, 10, 11, 11, 12)

> summary(z)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.00 6.00 8.00 7.45 9.00 12.00

The variation of the data can be summarized in the interquartile range (IQR), the distance between

the first and third quartile (here: IQR = 9 − 6 = 3).

In general pth percentile is the p%-cutpoint of ordered data (from smallest to largest). Sometimes in

official statistics, deciles are used – 10th, 20th, etc percentiles.

A boxplot is a graphical representation of median and quartiles:

 R:

> boxplot(x)

Boxplot gives an overview of the distribution of the data. It is often used to compare data across

different groups.

> boxplot(Y~g) # g is a categorical variable with values 1, 2 and 3

(genotype)

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 19

Another way to look at the distribution, is to plot a histogram of the data. To obtain a histogram, the

scale of the variable is divided to consecutive intervals of equal length and the number of

observations in each interval is counted.

R:

> hist(Y)

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 20

For nominal data, mean and standard deviation do not make much sense; neither do median and

percentiles. To see the distribution of the data, look at the frequency table.

Example:

Blood groups of 240 individuals:

Blood group n %

A 56 23.3%

B 75 31.2%

AB 23 9.6%

0 86 35.8%

. . . and its graphical representation – bar chart or pie chart:

Note: pie charts are misleading and should be avoided!

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 21

R:

> eyecol=c(1,2,1,2,2,2,3,3,1,4,2,2,2,3,1,4,3,2,1,1,1) # reading in data

> table(eyecol) # a simple frequency table

eyecol

1 2 3 4

8 7 4 2

> eyecol=factor(eyecol, labels=c("blue","grey","brown","green"))

> # created a factor variable

> table(eyecol) # a more meaningful table

eyecol

blue grey brown green

8 7 4 2

> prop.table(table(eyecol)) # relative frequencies

eyecol

blue grey brown green

0.3809524 0.3333333 0.1904762 0.0952381

> round(100*prop.table(table(eyecol)),1)

> # percentages, rounded to 1 decimal place

eyecol

blue grey brown green

38.1 33.3 19.0 9.5

> barplot(table(eyecol)) # a simple bar chart

> barplot(table(eyecol),col=c("blue","grey","brown","green"),main="Eye

color")

> # a nicer one

Some notes on statistical graphics:

• A graph should communicate useful information more efficiently than any other (numeric)

summaries

• A good graph should have a good information to ink ratio – avoid fancy details, that do not add

information, but make the graph more complicated (larger, more colorful).

• Pay attention to the scale of the graph!

Matemaatiline statistika ja modelleerimine, DK.0007

Tanel Kaart http://ph.emu.ee/~ktanel/DK_0007/ 22

2.5 R: Descriptive statistics by groups

Suppose you would like to compare means or other descriptive statistics in different subgroups of

your sample. In R, you can use the function tapply for that. This function takes 3 arguments: the

numeric variable, a categorical grouping variable and the function to apply.

To understand, how it works, try the following examples:

weight = c(56, 67, 65, 78, 49, 87, 55, 63, 70, 72, 79, 52, 60, 78, 90)

sex = c(1,1,1,2,1,2,1,1,1,2,1,1,1,2,2)

tapply(weight,sex,mean)

tapply(weight,sex,summary)

